! L <2} Y £
‘/L"—?‘D' / Cﬁ //(/él_)";z (AT A=l =1 e nR) PATH PLANNING FOR N94-17280
CIANTTIC TRUSL ASLSTMRLY Final
— wnuort, 21 tar. 1992 - 22 Sep. 1993

(# nss.. Y :er Polytachnic Inst.) Unclas
314

63/18 0193078

FINAL REPORT

PATH PLANNING FOR ROBOTIC
TRUSS ASSEMBLY

Arthur C. Sanderson
Electrical, Computer, and Systems Engineering Department
= Rensselaer Polytechnic Institute
Troy, NY 12180

Submitted to

R. W. Will
National Aeronautics and Space Administration
Langley Research Center
- Hampton, VA 23665

March 21, 1992 to September 22, 1993
Research Grant No. NAG-1-1413

PART I:

PART II:

PATH PLANNING FOR ROBOTIC TRUSS ASSEMBLY

CONTENTS

Flexible Potential field Path Planner

Planning Collision Free Paths for Two Cooperating Robots Using
a Divide-and-Conquer C-Space Traversal Heuristic

PART I: Flexible Potential Field Path Planner

CONTENTS

LIST OF TABLES o o e e e e e e e e e e e vi

LISTOF FIGURES i ittt et e e e e e e e e vii
ACKNOWLEDGEMENTS Q‘./

ABSTRACT . . . e e e e e e X

1. INTRODUCTION . . . ot et e e e i e e e e e e e e e 1

L1 Goal . . . o i e e e 1

1.2 Organization of the Text 2

1.3 Nomenclature« o v o v i e e 3

2. SURVEY OF SOLUTIONS TO THE PROBLEM 5

9.1 PreviousSolutions e 5

2.1.1 Global Methods 5

21.2 Local Methods 7

2.2 Munger’s Hybrid Global and Local Path Planner 8

2.2.1 Swept Sphere Model 9

2.2.2 Local Path Planning with Potential Fields 10

2.2.3 Graph Search Around Obstacle Corners 14

2.2.4 Software Implementation o0 16

3. LOCAL PATHPLANNER 17

3.1 Pseudo-Potential Fields. 17

3.2 Robust Path Planning 17

3.2.1 Resolving Singularities 17

3.2.2 Joint-Range Excursion 20

3.2.3 Active, Adaptive, Flexible Potential Fields 22

3.24 VariableStepSize.o oo 32

3.3 Faster PathPlanning 34

3.3.1 Standard Stopping Criteria 34

3.3.2 Oscillation Detection 35

i

4.

3.

3.3.3 IgnoreObstacles 36

3.4 Accurate Goal Pose Acquisition 37
3.4.1 Step Size Conditioning 37
3.42 Goals and Subgoals 38

3.5 Smoothing 39

GLOBAL PATHPLANNER 41

4.1 Sending Different Options to the Local Planner 41

42 MoreSubgoals. 41

SOFTWARE IMPLEMENTATION 44

5.1 Programming Concepts, 44
5.1.1 Module Hierarchy 44
51.2 Variables. 45
5.1.3 Datatypes® 47
51.4 CIRSSE'sMake 48
515 CompilerFlags 48

52 TheModules 49
5.2.1 The “usrFlags" module 49
5.2.2 The “global” module* 49
5.2.3 The “spec” module®* 50
524 The “Ist” module* 50
5.2.5 The “stack” module* 51
5.2.6 The “vector” module* 51
5.2.7 The “alg” module* 52
5.2.8 The “graph” module*. 53
5.2.9 The “parser” module* 54
5.2.10 The “model”’module 56
5.2.11 The “graphics”" module 56
5.2.12 The “env’ module* 57
5.2.13 The “robot” module* 58
5.2.14 The “lpath” module 58
5.2.15 The “gpath® module 59
5.2.16 The “ppmain” module 59
5.2.17 The “main®module. 59

iv

5.2.18 The “PathPlanner” module 60

53 ThelnputFile 60
6. CIRSSE TESTBED 66
6.1 Physical Plant 66
6.2 CIRSSE Planner Requirements 66
6.3 Software Architecture. 66
6.4 Compiling the PathPlanner Using CMKMF 70
6.5 Executing CTOS Applications 71
6.6 Demonstration #1 Paths 71
7. NASA LANGLEY TESTBED 76
7.1 Physical Plant o 76
7.2 Langley Planner Requirements 76
7.3 Software e 76
7.4 Truss StructurePaths 79
8. RESULTS AND CONCLUSIONS 85
8.1 Computational Complexity, 85
8.2 Weaknesses 86
LITERATURE CITED o i e e e et e 89
APPENDICES e 92
A. Imakefile FileExample 92
B. Simulation Input File e, 93
C. CTOS Application Configuration File 9
D. Robot Definition Files, 95
E. Planar Model e 103
E.1 Distance from Segment to Triangle 103
E.2 Distance from Triangle to Triangle 106
F. Header File Listings 108

Table 7.1
Table 7.2

LIST OF TABLES

Paths for Langley Robot (1lmm accuracy)

Paths for Langley Robot (for 1cm accuracy)

vi

...........

..........

Figure 1.1
Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8
Figure 3.9
Figure 3.10
Figure 3.11
Figure 3.12
Figure 3.13
Figure 3.14

Figure 3.15
Figure 3.16

LIST OF FIGURES

Langley Structural Assembly Laboratory 2
Swept Sphere Model for Links, Struts, and Obstacles 9
Example of Incremental Steps Forminga Path 10
Joint Limit Repulsion 12
Bad Step Sizes (A. oscillation B. collision) 13
Global Subgoals Help Local Planner 14
Four Ways to Rotate from Start to Goal 15
Singular Position Limits Motion 18
Joint #3isFrozen 21
Active and Passive Obstacle Repulsion 23
Adaptive and Static Repulsion. 25
Flexible Fields do not Over-Avoid Obstacles 26
Adaptive Fields do not Oscillate 27
Superposition of Joint Effects Causes a Collision 27
Grazing Collision 28
Cluster Formation from Objects 29
Cluster Causes a Collision 31
Master Control Over Repulsion Strength 31
Smaller Step Size Near Obstacles 33
Detection of Oscillations (n =35) 35
Reduce Step Size to Avoid Overshoot 37
Range of Acceptable Locations of a Strut in the Gripper . . . 38
Choosing the Correct Report Size can be Critical 39

vii

Figure 4.1
Figure 4.2
Figure 5.1
Figure 5.2
Figure 6.1
Figure 6.2
Figure 6.3
Figure 6.4
Figure 6.5
Figure 6.6
Figure 7.1
Figure 7.2
Figure 7.3
Figure 7.4
Figure 7.5
Figure 7.6
Figure 8.1
Figure E.1
Figure E.2

Two Geometric Objects and Their Subgoals 42

Subgoals Around Blocking Obstacles 43
Module Hierarchy 46
Tetrahedral Structure Numbering Conventions 61
CIRSSE Testbed Robots 67
Demo 1 Application 67
Nodes and Transitions 68
Path from Home to the Triangle’s Node 72
Path from Rack to Insertion Point. 73
Global Subgoal Assists Local Planner 75
Langley Testbed Robots (model) 77
AUnitCell 77
Langley Truss Structure with Sequence Numbers 78
Path from Rack to Langley Structure Insertion 81
Example: Tight Fit and Large Cluster 83
................................... 84
Example: Unattainable by Potential Field Method 86
Triangular Planar Model 104
In-The-Triangle() o v oo e 106

viii

ABSTRACT

A new Potential Fields approach to the robotic path planning problem is proposed
and implemented. Our approach, which is based on one originally proposed by
Munger [1] [2], computes an incremental joint vector based upon attraction to a
goal and repulsion from obstacles. By repetitively adding and computing these
“steps”, it is hoped (but not guaranteed) that the robot will reach its goal. A
attractive force exerted by the goal is found by solving for the the minimum norm
solution to the linear jacobian equation. A repulsive force between obstacles and
the robot’s links is used to avoid collisions. Its magnitude is inversely proportional
to the distance. Together, these forces make the goal the global minimum potential
point, but local minima can stop the robot from ever reaching that point.

Our approach improves on a basic, potential field paradigm developed by
Munger by using an active, adaptive field — what we will call a “flexible” potential
field. Active fields are stronger when objects move towards one another and weaker
when they move apart. An adaptive field’s strength is individually tailored to be
just strong enough to avoid any collision.

In addition to the local planner, a global planning algorithm helps the planner
to avoid local field minima by providing subgoals. These subgoals are based on the
obstacles which caused the local planner to fail. A best-first search algorithm A* is

used for graph search.

PRECEDING PAGE BLANK NOT FWLMED

X
| 1X
3 e R R N T
LPAG;.—”. Beiilionin ;‘::F,LL‘.' RN

CHAPTER 1
INTRODUCTION

1.1 Goal

This paper addresses the problem of reliable and efficient planning of a collision-
free path for a single chain multi-link robot. Our proposed algorithm plans free space
moves, i.e., we do not plan paths that incorporate contact motions.

One application of this work is to build truss structures which might be used
as space platforms, energy collectors, radiators, in space applications. An example
of such a platform is shown in Figure 1.1 [3].

We have tested our algorithm’s path planning for two different robot con-
figurations. At the Center for Intelligent Robotic Systems for Space Exploration
(CIRSSE) the planner provides a general capability for free space path planning. It
is incorporated in a testbed which explores the integration of autonomous robotic
algorithms for space operations. At NASA’s Langley Space Center, roboticists are
also working on the construction of space structures, but the emphasis is on robotic
assistance to a human’s task. Here, the planner can relieve a busy human of a very
time consuming task.

The goal of our work may be stated as follows. Given:

¢ Robot’s kinematic data,

1. Modified D-H Parameters,
2. Joint ranges,

3. Link models (planes and cylinders),
¢ Environment’s obstacles,

e Joint angle vector for the Start position of the robot,

1

T i

e : , \' b - ; - \
origikod S, 3

Figure 1.1: Langley Structural Assembly Laboratory

¢ Position and orientation of the goal's end effector,
o Approach and departure offsets,

the program should produce a sequence of joint angles (called a path) which will be
kinematically correct, collision free, and accurate.

Our algorithm is based on a combination of previously proposed planning
methods. It is relatively fast and its plans are smooth. Unfortunately, the algorithm
is not guaranteed to find a solution, even if one exists, nor is its solution guaranteed
to be optimal (with respect to time, distance, or speed). The body of this work
strives to increase the planner’s flexibility by addressing problems encountered by
the previous work. As a result, for relatively uncluttered spaces like those in the

two applications listed, acceptable solutions are found.

1.2 Organization of the Text

Chapter 2 reviews other paradigms of path planning. Then it summarizes Rolf

Munger’s thesis project, from whose work this paper is directly descended. Details

of his work can be found in CIRSSE Report #91, and we suggest that his work
be kept at hand while reading this report. Chapter 3 discusses our improvements
to Munger’s local path planner. Chapter 4 reports our modifications to his global
path planner. Chapter 5 discusses the algorithm’s modular programming and input
files. Chapter 6 describes the CIRSSE testbed and the implementation of the path-
planner within that testbed. Chapter 7 describes the NASA Langley testbed, its
goals, and the planner’s solutions. Finally, we conclude our discussion in Chapter 8
with observations on the results obtained by the planner and suggestions for future
improvements. |

In the Appendixes, we list our program’s files and develop a model for planar

objects.

1.3 Nomenclature
Here are some definitions which are used in this report.

DOF Degrees Of Freedom. For a single chain robot: the number of independently

moving joints.

redundant If a robot’s DOF is greater than the size of the space it is expected to
work in, then it is redundant. Essentially it is more flexible because it has the

freedom to chose more than one configuration per pose.
pose The combination of the EE’s position and orientation in cartesian space.

EE End effector, tool frame, gripper. The part of the robot which carries the tool

or payload.

Throughout the text, scalars are printed in italics, constants in ITALICS,
vectors in bold, and matricies in BOLD. Occassionally, key words will be empha-

sized by putting them in italics, these should be distinguishable from scalars by their

context. In discussing the software development, we will indicate UNIX commands

and file names by the typewriter font.

CHAPTER 2
SURVEY OF SOLUTIONS TO THE PROBLEM

2.1 Previous Solutions

In the early days of robotics, people planned the paths; robots just followed
them. Programmers would enter a sequence of joint values or cartesian points. Then
the robot would move, in order, to each knot point. Later, a “teach” method was
devised. While the operator drove the robot to the goal, he would save key positions
along the way.

These methods have drawbacks. If the goal, the starting point, or any obstacles
change after the knot points are saved, then the path would have to be re-entered.
These methods also take time and expertise.

Clearly, none of these approaches are desirable for our problem. We want an
autonomous, computer generated solution. Presently, most proposed solutions of
this path planning problem fall into one of two categories; global planners and local

planners.

2.1.1 Global Methods

Global methods consider the entire environment (or a large part of it). They
have an advantage over local solutions in that, they will usually find a solution, if
one exists. This comes, however, at the expense of computational complexity. In
fact, as the degrees of freedom of the robot increase, these methods may quickly
become intractable.

The global methods can be categorized as follows:
1. Search through Graphs of the Environment,

(a) Cell Decomposition Graphs.

(b) Visibility Graphs.
2. Divide, then Conquer the Environment.

3. Apply Calculus of Variations of Optimization.

These techniques are all linked in one key aspect: they require that the envi-
ronment be mapped onto the robot’s joint space. For example: to a 6-DOF robot,
what was a point in cartesian 3-space “balloons” into a three dimensional object in
the robot’s six dimensional joint space. Meanwhile the robot itself has shrunk to a
point. The problem is dramatically reduced from planning a path for a 6 dimen-
sional robot in 3 dimensional space to planning a path for a point in six dimensional
space, albeit with larger obstacles, see [5] [6] [7] [8]. Unfortunately, the environ-
ment’s transformation requires inverse kinematics routines, which are notoriously

computation-intensive [9] [10] {11].

2.1.1.1 Graph Search Methods

Cell Decomposition methods divide the world into two types of space: free
and occupied. The free space cells are put into a graph, and the adjacent cells
are connected. Then a search algorithm is applied which finds the shortest path
from the “start” cell to the “goal” cell through connected cells. The specific search
algorithm used will depend on the type of optimality desired [12] (13] [14].

An alternate way of building the graph is to choose a sufficiently large set
of subgoals based on geometrical information. This method requires an algorithm
which determines visibility between subgoals. If visibility is established then the

subgoals are connected.

2.1.1.2 Divide and Conquer Method

Divide and Conquer methods try to minimize the number of transformations
of obstacles to joint space. First, a line is drawn in joint space between the start and
the goal. This is our starting path. Search along that line for obstacle collisions. If
one is found, then search in the hyperplane normal to the line for a point which is not
in occupied space. When such a point is found, draw a line to it from the last safe
point found on the original path. Repeat the search along this new line. Continue
by connecting the new point to the goal. By adding back recursion, this method will
always find a feasible path. It also has the advantage of only transforming points

along the path into joint space, see Weaver [4].

2.1.1.3 Calculus of Variations

Finally, there is a more mathematical approach which relies on the calculus of
variations to minimize a cost function which usually involves distance to obstacles
and path length. These methods are currently intractable with robots of high order
[20].

2.1. Local Methods

Local solutions try to solve the “global” problem by repetitively finding in-
cremental changes of the current position which bring the robot closer to the goal.
Thus they concentrate only on what is “near” the current state, and ignore the
larger picture. These methods are computationally fast, but they may not find a
solution if the increments are poorly chosen. In addition, their solutions may not
be optimal.

The simplest local method is called the hypothesize and test method. The
algorithm generates a joint increment, “step”, towards the goal, and if the step is

feasible, repeats. If not feasible, if a collision occurs, then it chooses a heuristic step

(perbaps random) and continues. This has not led to great success.

A better method is called the potential field approach. While the goal exerts
an attractive force on the robot, obstacles repulse the robot. Each step is taken
along the gradient of this potential field. Since there is only one attractor, the goal,
it will have the globally minimum potential. Unfortunately, this does not rule out
the existence of local minima, which have null gradients and thus null steps [21].

There are many variations of the potential field method. The vortex field
method proposed by DeMedio and Oriolo {15] attempts to reduce the problem of
local minima by adding a cross product to the repulsion. A method to escape local
minima by brownian motion has been reported by Barraquand [16] to have success
with many difficult problems. Still others, propose minima-less potential fields based
on superquadric potentials, Khosla and Volpe [17] [18], and on star-shaped obstacles,
Rimon and Koditschek [19].

2.2 Munger’s Hybrid Global and Local Path Planner

As mentioned earlier, this project extends the method proposed by Rolf Munger
[1]. This overview will cover the concepts necessary to understand our project’s mod-
ifications. We will also note some strengths and weaknesses of his approach, but
save a complete discussion for Chapters 3 and 4 when we describe our modifications.

To summarize: Munger combinés a global graph search over geometrically
chosen subgoals and a local potential field approach to determine the visibility be-
tween those subgoals. For speed, he uses a single representation for all objects in
the environment, the robot’s links, the struts, and the world’s obstacles.

His work can be divided into four areas:
o Modeling of the World

o Potential Field Path Planning (local)

Figure 2.1: Swept Sphere Model for Links, Struts, and Obstacles

e Graph Search Path Planning (global)

e Software Implementation

2.2.1 Swept Sphere Model

All path planners need a model of the physical world to check for collisions.
Potential field path planners not only need to determine distances between models
in order to calculate potentials, but also need to know the direction from one model
to another in order to calculate the diréction of repulsion.

Since the repulsions between n moving parts and themselves, as well as between
themselves and m fixed parts, need to be calculated at each step for n joints (i.e.
O(n®) + O(n? m)), the calculation needs to be fast. Therefore, Munger chose a very
simple model called a swept sphere. Figure 2.1 shows the area swept out by a disk
along a line segment.

Note that one weakness of having a single simple model is that complicated

obstacles cannot be modeled accurately. Since he needs to guarantee a collision-free

10

]
\
{

Figure 2.2: Example of Incremental Steps Forming a Path

path, the swept spheres must be made conservatively larger than the actual objects.
Therefore, on occasion, collisions will be reported which would not actually occur,
and feasible paths will not be found.

In Appendix A, we describe a plane model which helps to simulate more types
of world obstacles. Tornero and Hamlin [28] discuss a computationally fast modeling

method based on spherical objects.

2.2.2 Local Path Planning with Potential Fields

As previously mentioned, the local planner calculates a joint increment which
avoids obstacles and moves towards the goal. This increment is added to the current
joint position vector. Then we repeat the process. Thus a “path” is a list of joint
increments which if followed sequentially by the robot, moves it from the start to
the goal, see Figure 2.2. The dotted lines in the figure trace the path of the péyload
strut for each step.

Munger’s potential field method sets the joint vector increment, dq, sometimes

11

called the “step”, as follows:
dq = dqatt + dqrep + dGrange (2.1)
where

dqatt is the attractive force exerted by the goal. It is found by solving the system

of linear equations:

J dqatt = dx (2.2)

where J is the manipulator jacobian and dx is made by stacking the cartesian
direction vector and rotation axis vector which 1 s the current iteration’s
gripper pose to the goal's pose. Since for redundant robots (> 6-DOF) this
linear equation is underdetermined, there are, in general, many solutions. We

choose a solution which minimizes the cost function
cost(x) = xTQx

Q is a positive definite diagonal weighting matrix.

This standard optimality problem (see ref) is solved by introducing a la-

grangian vector A. The attractive force solution is
dqaee = Q71T (2.3)

where) is found from

JIQ1ITA =dx (2.4)

Since JQ~1JT is square, this linear equation can be solved by gaussian elimina-
tion and back substitution. Instead of gaussian elimination, however, Munger
uses Householder Transformations, which, while slower, have better numerical

properties [22].

12

gmax

Figure 2.3: Joint Limit Repulsion

dqrep is the collision repulsion vector. Since a joint affects all the links later in
the chain, the repulsion felt by each joint is equal to the sum of the repulsion
contributions of each later link. The repulsion contribution of each link is
the sum of the repulsions, q, between that link and every obstacle in the

environment. The repulsion between a link and a obstacle is
r-s

where C is a constant, r is the unit vector from the link to the obstacle, s is
the unit direction that the joint moves the link, and d is the distance between
the link and the obstacle. Note that this is an inverse square law much like

gravity or electro-magnetism.

dQrange tries to keep the joints within the physical limitations of a particular robot
by increasing rapidly when the current joint position nears its limit. The
repulsion is defined as shown in Figure 2.3. Through trial and error, x and y

were set to be .8¢min and 10, respectively.

13

‘ goal ®)

Figure 2.4: Bad Step Sizes (A. oscillation B. collision)

Because the translational and rotational motions of the robot do not neces-
sarily finish at the same time, Munger also provides a method to reduce vectors to
the null space of the manipulator jacobian’s translational or rotational part (top or
bottom half, respectively). If dq is in the null space of J then it does not affect the
pose of the gripper dx, but if the robot is redundant, it can still move some links
of the robot away from obstacles. This is called “self-motion”. Working with the
null space of the top or bottom of J allows the goal position to be held while the
robot finishes rotating or for the goal orientation to be held while the robot finishes
translating, respectively.

There are three major weaknesses with Munger’s solution. First, there are
many “magic” numbers which need to be balanced with one another by trial and

error. Second, the iterative nature of the plan produces discrete steps which, if too

14

Figure 2.5: Global Subgoals Help Local Planner

large, can cause oscillations, collisions, or joint overruns (see Fig 2.4). Finally, there
may be places where ||dq|| approaches zero, trapping the robot in a local minimum.
Taken together, these problems make the algorithm inflexible, prone to failure,

and slow. The majority of this project goes towards remedying these ailments.

2.2.3 Graph Search Around Obstacle Corners

Munger uses a global algorithm to assist his potential field path planner.. He
employs the graph search method. First, a list is created which includes the starting
location and the goal. Then since he deals with tetrahedral trusses, subgoals are
put at the corners of tetrahedra. These subgoals are likely to position the robot to
avoid the tetrahedra.

Next, all the nodes in the list are connected and each connection is given
a weight which is the lower bound of the cost to traverse that connection, i.e., the

distance (plus an angular rotation factor). Now, any search algorithm can be applied

15

Goal
Symfnetry
1 A 3 ‘
')
ll ! X F4 - \\
] { | ’ 7 - S~ - \\
' --7 o
' : : /’I » ‘\
: ! : ’ !
goal : -goal
short rotationangle i- -
long rotation angle :
]
f 1
A « /
\ [} A U
4‘\ : ’\\ ‘l : > -
S e ezl Nt . \ e <
- I A] N Rk
” N)’ '\\ \ | “ \\ ’I ll
\
it ﬁ \\' : \ s l
; \ . ' 4

Figure 2.6: Four Ways to Rotate from Start to Goal

to find a path through the connections from start to goal. The A* algorithm was
chosen for its speed in finding the lowest weighted path [23] [24].

The A* algorithm is applied, and a trial list of connections is generated.
Clearly, since all nodes are connected, the goal and the start are connected, and
this trivial connection will always be the first solution tried.

Each connection in the list must be tested, in order, for visibility by the local
path planner. If the local planner cannot find a path for the connection, then that
connection is labeled “invisible”, and A* will no longer include it in subsequent
solutions.

Before a connection is considered invisible, however, the local planner is given
four opportunities to find a feasible path for it. This includes inverting the goal’s

orientation of symmetric payloads and rotating the payload the long way around

16

the axis of rotation (see Fig 2.6).

Applying global search in this way greatly expands the ability of the local
path planner, but the global search is only as good as the choice of subgoals. If the
subgoals have bad orientation or approach directions or are near too many obstacles,
they may be invisible. If there are too many invisible subgoals, the algorithm will

be very, very slow.

2.2.4 Software Implementation

The structure of the software was left essentially unchanged except for the
interface with CIRSSE and will be explained fully in the chapter on software, Chap-
ter 5, and the chapter on CIRSSE, Chapter 6.

CHAPTER 3
LOCAL PATH PLANNER

This chapter is the start of the original work done for this project.

3.1 Pseudo-Potential Fields

The simplicity of Equation 2.1 is deceptive. In nature, forces like gravity are
applied continuously in time, but our pseudo-potential fields are applied discretely,
in steps. As a result, oscillations, collisions, and joint-range overruns can occur from
one step to another because the steps are not well suited to the repulsion field. In
addition, the repulsive field treats objects as point “masses” located at their points
of closest approach, instead of as distributed masses over their entire volume. This
can cause “rocking” when one point on the object is pushed away only to bring
another point on the same object too close to the obstacle; resulting in a back and
forth motion like a see-saw.

We have made four improvements to Munger’s path planner: more robust
path finding, shorter computation time, more accurate goal pose acquisition, and

smoother paths.

3.2 Robust Path Planning

3.2.1 Resolving Singularities

To obtain dqatt, Munger used the jacobian to transform a cartesian attrac-
tion vector to a joint space vector. In solving the optimality problem that arises,
(Section 2.2.2), he failed to account for the robot’s singular positions, i.e., where
the jacobian looses full rank; where there exists a vector in cartesian space which no

joint space vector can effect. Mathematically: if rank(J) < 6 then rank(JQJT) < 6

17

Reduced Motion x 1

]

]

]

]

1Singular
 Direction
: X 2
[}
Singular !
Position

7777

Figure 3.1: Singular Position Limits Motion

18

19

which implies that JQJT is singular. If JQJT is singular, we cannot solve Equa-
tion 2.4 for A. If we cannot solve for A, then we cannot solve Equation 2.3 for dqatt.
Thus, the planner does not move towards the goal; it fails.

Our solution is to always make the jacobian full rank. First, we check the
jacobian’s rank. If it is degenerate, we delete rows of the jacobian until it attains
full rank. Since the new jacobian Jpew is fat (more columns than rows) and Q is
also full rank (positive definite), JnewQJX,,, will be full rank. Finally, we can solve

for dqat¢ as before.

dqatt algorithm:

1. Using Munger’s algorithm, solve for dqa¢t
2. If his algorithm returns without error then quit.

3. Else, apply gaussian elimination on Equation 2.2 and obtain:

Jdq = dx’ (3.1)
where
(12 iz Jtpor |
oo
Jnn j:;,DOF
\ 0 0 0o ... 0)
dx’' = (dXI
\dXz

Let n be the rank of the jacobian, dx; be n x 1, and dx2 be (6 — n) x 1.

4. Drop dx2 and the null rows of J’ to obtain a new formula,

3" dq = dx; (3.2)

20

5. Since J” is full rank, J”QJ”T is also full rank. Solve for dq by using Munger’s

minimum norm linear equation algorithm.

—end of algorithm—

In step #3, we use a standard gaussian elimination with scaled partial pivoting
algorithm which can be found in many texts on computational mathematics [26].

Note: if dx2 is non-zero, then it represents an unrealizable component of the
desired direction dx (see Figure 3.1).

By making the jacobian full-rank, the planner no longer fails whenever the
robot is at or near a singular configuration. This greatly improves performance
since redundant robots have many singularities throughout their workspace.

The planner will still fail, however, when the desired direction and the singular
direction are precisely the same. In such a case, dx; will be a null vector, and the
algorithm will return a null vector for dgatt. Not only is it very unlikely for the
vectors to coincide exactly, but even if they do, the other components of dq, dgrep
and dqQrange, Will probably push the robot away from this situation. We have not
encountered this problem in our experiences with the planner, but for less flexible
robots (example: those with 6-DOF') this problem may occur more often. A possible
solution would be to choose a small random dqa¢t whenever the dqaee algorithm
fails.

This rank reduction step is fairly complicated, O(n3), where n = DOF, but
since the DOF of most manipulators is fairly small, the time consumed is not no-

ticeable on a per iteration basis.

3.2.2 Joint-Range Excursion

Any real robot’s joints have constrainted ranges of motion. If the planner’s

planned path does not stay within these limits then its path is not considered fea-

sible.

21

%) . -----2= Free direction
1 S 2 - 3
! ! <— Blocked direction
-~y AN A~
Ay N
! !
/’ /l
I’ ‘\..' ,’
N A Y
~ \\
\l A -
4
o O p
/’
goal goal
AN
\\ \\
\ \
i i
/ 4
4 4
4 -

Figure 3.2: Joint #3 is Frozen

Munger’s solution proposed an inverse square law repulsive force near joint
limits. There are two problems. First, if the repulsion constant is too small, then the
joint can go out of range. Second, if the repulsion is too large, then the “flexibility” of
the robot’s joints will be lowered, and more local minima will be created. Moreover,
there is no single setting which will be “just right” for all cases.

We solved this problem by combining a small joint limit repulsion with an

algorithm for “freezing” any joint which exceeds its limit.

Joint Range Freezing Algorithm:

1. Calculate dq from Equation 2.1.
2. Add dq to the current joint vector.
3. If this new joint vector is in the robot’s range, then quit.

4. Else, if the 1** joint is out of range, then zero the i** column of the jacobian,

the i** column of dqrep and the :** column of dQrange-

22

5. Re-solve dqatt using the dqatt algorithm.
6. Calculate dq from Equation 2.1 using the new dqat, dqrep, and dqrange.

7. Goto Step #2

—end of algorithm—

re-solve Equation 2.2 for dqatt, add dqrep and dQrange (saved from the first
iteration), and repeat. By zeroing a column of the jacobian, Step #4, the joint
corresponding to that column has no effect on the end effector’s pose. Then, by
virtue of finding the minimum cost solution, we can guarantee that the i** element
of dqatt will be zero. (Note: the i** elements of dqrep and dqrange must also be
zeroed).

This algorithm completely eliminates the problem of joint overruns while main-
taining good flexibility. Figure 3.2 shows a typical case where joint overruns might
occur. The wrist, joint #3, is strongly attracted to the goal because it has such a
strong effect on the EE pose. As a result it has reached its limit and must be frozen.
The goal-ward rotation, however, is continued by the other joints, which take on
more of the burden of rotating. Finally, the wrist is freed to move again when the

goal no longer attracts it against its limit.

3.2.3 Active, Adaptive, Flexible Potential Fields

This section proposes fundamental changes to the repulsion field calculation
in order to minimize the number of failures due to local minima.

Munger proposed a “static” repulsion field. It relies on the constant, C, in
Equation 2.5, to scale the repulsion field of obstacles with respect to the attraction
field of the goal. This “universal constant” does not adjust to varying attractive
field strength nor to large clusters of obstacles. An “adaptive” repulsion would make

itself only as large as was necessary to stop a collision.

23

Obstacle k

Figure 3.3: Active and Passive Obstacle Repulsion

His proposal is also “passive”. The repulsion between objects is the same
whether they are moving towards or away from one another. Hence, objects which
are‘already moving apart avoid each other unnecessarily. An “active” scheme re-
pulses more when objects are moving towards one another and less when they are
moving apart.

Our active repulsion selects a strong adaptive repulsion if a link is moving
towards an object, and it chooses a weak static repulsion if they are moving apart.
How does it determine relative motion? Referring to Figure 3.3, r is the direction
vector from the stationary obstacle to the moved link. s is the direction that Link;
moves when Joint; rotates in the positive right hand sense about its axis z;. r and
s are unit vectors. (While this figure shows a revolute joint, our proposed method

works equally well with prismatic joints, with only minor modifications.)

24

Obstacle Repulsion Algorithm:

1.

10.

Let j = DOF; let dq = dqatt; let dgrep equal the null vector.

Calculate r and the distance between Link; and Obstacles.

. Let 2z =1.

Calculate s for Link; and Joint, .

If sign(sign(r - s)sign(dg;)) is non-negative then the link is moving towards

the obstacle; calculate dg,.p, using passive repulsion, from Equation 2.5:

dqrep.' A dqrcp.' + C—d— (3.3)

r-s
2
Else, the links are moving together; calculate dg,.,, using adaptive repulsion,

as follows:

. T - s|dg]

d4rep, — dgeep + (THRESHOLD) —

(3.4)

With the addition of the dg; term, the repulsion becomes normalized about
THRESHOLD. 1f d < THRESHOLD and the link is moving directly at
the obstacle, i.e., |r-s| = 1, then |dg,.p,| becomes greater than the attraction
force, |dg;|, and the links move apart. Compare this adaptive force with the

static force in Figure 3.4.

Let dg; «— dq; + dgrep,- This keeps the joint increment current for future

calculations of the adaptive force.
If : < j then let i — i + 1; goto Step #4.
Until every obstacle has been tested, increment k and goto Step #2.

Let 7 «— j —1; goto Step #2.

- distance

Static Repulsion

THRESHOLD

Active Repulsion

Figure 3.4: Adaptive and Static Repulsion

25

26

v Goal)
4 flexible
e field
Obstacle Q’ o over-avoidance
- \\
repulsion
field
lines
link

Figure 3.5: Flexible Fields do not Over-Avoid Obstacles

11. report dqrep.

—end of algorithm—

It is difficult to quantify the improvement due to flexible fields. Qualitatively,
however, there are three visible improvements to the planner. Figure 3.5 shows a
virtue of the active nature of our flexible field. Since the link is moving away from
the obstacle, our flexible field actively selects the low, passive repulsive force, and
the link moves directly towards the goal. If a passive field were used, the link would
unnecessarily avoid the obstacle.

A second improvement is shown in Figure 3.6. Since the adaptive field repulses
only as much as necessary to keep the link farther than the threshold distance, when
the link is between two obstacles, it does not oscillate, rather the repulsions adapt
to keep the link where it is. With the static field, the closer obstacle’s repulsion
is stronger, so the link moves towards the farther obstacle, then this repeats in an
oscillatory manner.

The best improvement is also difficult to quantify; fewer collisions occur. A
well chosen threshold distance can make collisions very rare. Still there are some

situations where collisions will occur no matter how large the threshold is made.

27

link
obstacle obstacle -

O—||—0O O=||—0O

- -
--

vs.
Adaptive Field Static Field

Figure 3.8: Adaptive Fields do not Oscillate

r"‘.
Joint1_ -° -
.~ safe

-
4
L4
”

together
N collision

link

Figure 3.7: Superposition of Joint Effects Causes a Collision

28

Obstacle

Figure 3.8: Grazing Collision

For example; since the repulsions are calculated for one joint at a time, two joint
moves, each of which is safe alone, can cause a collision when combined, Figure 3.7.
Figure 3.8 shows a situation where a lumped mass obstacle is insufficient to avoid a
collision. Since the link’s desired direction is normal to the obstacle’s closest point,

r - s is zero. The repulsion is zero; the link collides with the obstacle.

3.2.3.1 Clusters

When there are too many obstacles grouped closely together, their overlapping
repulsive fields can become too large for the robot to approach. If this “cluster” is
near the goal, then the planner may report a local minimum even though there is a
direct, feasible path to the goal.

We solve this problem by reducing groups of obstacles to a single “cluster”,
having a single repulsive field. Figure 3.9 shows two obstacles being combined into
and replaced by one cluster. The Cluster Formation Algorithm, which describes
how the environment’s obstacles are converted into clusters, is called in place of
Step #2 of the Obstacle Repulsion Algorithm. Therefore, clusters are defined for

each individual link and dissolve after each step is calculated. They are always

29

Object #1
a’ >
O 4 b "...‘\._.;-;
S A '__- \s\
S TTFe---Clster. __ T N
rm(a)= norm(b), b=(@+¢c)/2 c\‘ i
no = » DS Object #2

Figure 3.9: Cluster Formation from Objects

“up-to-date”, and thus, do not significantly diminish the resolution of the obstacle

models.

Cluster Formation Algorithm:

1. Choose any two objects, ¢ and j, from the environment.

2. Find the vectors from the current link to objects : and j. Call these vectors a
and c, respectively.

3. If
a-c

llalillell

then the pair (i,j) is a cluster; replace objects ¢ and ; with a new object :

>1-SMALL ANGLE. (3.5)

(same name) with the following characteristics:

(a) The direction of the new object is b.

(size;) a+ (sizej) ¢
size; + size;

b= (3.6)

where size has been defined in previous iterations as follows:

30

(b) Initially, the size of all objects is 1. New objects follow the formula:
size; — size; + size,.
For example: if a cluster formed from two objects (as in Figure 3.9) com-
bines with another individual object, then the resulting cluster (object)

has a size of three.

(c) Let ||b|| = min(]|a||,]|c]|). The new object’s distance is as close as the

nearer of the two original objects.
4. Repeat steps #2 and #3 for all remaining object pairs i and j.

5. If any clusters were found then repeat steps #2-4 (in order to group clusters

together into bigger clusters).

6. Report remaining objects’ (clusters’) direction vectors and distances to the

Obstacle Repulsion Algorithm.

—end of algorithm—

The advantage of using the size weighting system is that it eliminates the
pathological case where a long string of obstacles is reduced to a single, unrepresen-
tative cluster. The weighting factor essentially provides a “center of mass” for the
cluster.

Clustering greatly improves the planner’s performance in crowded environ-
ments. Munger’s planner failed whenever too many obstacles were near the goal.
His planner avoided the obstacles so well that the robot never reached the goal it-
self. Clustering completely eliminates this problem. A cluster of obstacles can be
approached as closely as a single obstacle: to within THRESHOLD meters.

A problem does arise, however, when too many obstacles are loosely called
clusters. Figure 3.10 illustrates what may happen if SMALL ANGLE is made too
large. Obstacles a, b, and ¢ form the cluster abc which does not adequately repulse

the link from obstacle a. Thus a collision with a occurs on the next iteration.

31

goal {_)

- - -y,

Repulsion
)
Control slope = f (obstacle_distance)
Factor . :
14 ,-E- SO AT
Relative
Gripper
} > Position
start goal

Figure 3.11: Master Control Over Repulsion Strength

The cluster’s temporary nature, which makes it accurate, also slows down the
planner. Calculating clusters is complicated. If n is the number of links and m is
the number of obstacles, then the average complexity is O(nm?). But the worst case
complexity (due to truly staggering bad luck) is O(nm*). Clearly, we must keep the

number of obstacles m low.

3.2.3.2 Overall Repulsion Control Factor

32

If a goal is within the adaptive distance threshold of any obstacle, then the
end effector cannot reach that goal since the adaptive repulsion is larger than the
goal attraction. This problem was solved by modifying the joint increment equa-
tion, Equation 2.1, with an overall repulsion control parameter, p. The new joint

increment equation 1s

dq = dqatt + p (dqrep + dqGrange) (3.7)

p is defined as shown in Figure 3.11. It is zero whenever the EE pose is near
the goal or the start so that obstacles near the goal and start can be approached.
It has a value of one (full repulsion) during the middle of the path for maximum
obstacle avoidance. Finally, there are two transition periods which turn on and off
the repulsion fields. The slopes of the transitions are inversely proportional to the
minimum distance between any obstacle and the robot.

This factor may allow some collisions near the endpoints of the path, but this
small price gains us the ability to reach goals which are also obstacles; for example,

when we wish to pick up a strut.

3.2.4 Variable Step Size

The norm of the joint increment dq determines the size of the step. Munger’s
step size is set arbitrarily to a constant value. If the constant is too large, Figure 2.4,
oscillations or collisions result. If the constant is too small, then the algorithm will
be slowed by unnecessary iteration computations.

A simple solution is to reduce the maximum step size when the robot is near

obstacles.

Step Size Algorithm:

1. Calculate dq step.

Figure 3.12: Smaller Step Size Near Obstacles

33

34

2. Calculate the maximum step size, as a function of the repulsion control p:

YL
< l‘:,\'f?‘“,i

[’ VR N
LN Waz step size = (MAX SIZE - MIN SIZE)+p(MIN SIZE) (3.)

3. If ||dgq|| > maz step size then

dq

maz step size. (3.9)

o d
lIdql|
4. If any robot’s link is closer than MINIMUM meters then

dq

“~ FACTOR (3.10)

dq

where FACTOR is currently equal to 2.

—end of algorithm—

Thus when p is zero, the step size is at a minimum, and when p = 1, the step
size is at its maximum. The logic is that when there is full repulsion, we can be
confident that moving fast will not cause a collision, but when there is less repulsion,
we should be more cautious and move slower.

Figure 3.12 shows the typical solution to the problem. The reduced step size
gives the repulsion a chance to act on the path, making it smoother. Not all cases
are handled quite so well; if the threshold is too small, a maz step size step can

jump over the MINIMUM distance region and cause a collision.

3.3 Faster Path Planning

Because the local path planner is used to determine visibility between global
subgoals, it is imperative for the local planner to be fast.
3.3.1 Standard Stopping Criteria

First, we implemented two standard stopping criteria for iterative processes.

The simplest counts the number of steps taken and if greater than maz count, stops.

35

ORIGINAL PAGE

IS

OF POOR QUALITY

path length

Figure 3.13: Detection of Oscillations (n = 5)

This is a brute force cure for endless loops. The second criteria tests for movement.
If the step size ||dq|| drops below some minimum threshold, then the robot is not
moving, and we stop. Since, through self-motion, redundant robots can have large
|ldq]| steps without any movement at the gripper, we also test the change in gripper

pose. If it becomes too small, we stop.

3.3.2 Oscillation Detection

Another condition which should cause the local planner to quit is a path with
oscillations at the gripper pose. These paths are undesirable because they are hard
for the robot’s motor controllers to handle.

We define oscillations according to the path of the end effector (Figure 3.13).
First, we choose a range of n steps to be tested. Then we call the Oscillation
Detection Algorithm after each iteration of the local planner. If oscillations are

detected then we report a local planner failure.

36

Oscillation Detection Algorithm:

1. Store the current end effector’s pose as pose;.
2. Calculate and store the distance from pose;_; to pose; as d;_ ;.
3. Calculate d;_n41,i,the straight line distance from pose;_n+1 to pose;.

4. Calculate the path length traversed by the end effector in the last n steps,

n-1
path length; = E di—ji-j+1 (3.11)

=1

5. If ﬁ%ﬁ < 1, then the end effector has not moved significantly within the

last n steps; report oscillations.

6. Else, report no oscillations.

—end of algorithm—

3.3.3 Ignore Obstacles

The more obstacles there are in the environment, the slower the planner. Speed
can be improved by ignoring some obstacles. Before calculating the repulsion be-
tween any two objects, and even before putting an object into a cluster, the distance
between the objects is compared to a threshold, and if that distance is larger than
the threshold, then the pair of objects is considered too far apart to significantly
effect one another, and they are dropped from further consideration.

This simple method greatly improves the speed of the algorithm in crowded
environments. Clusters, Section 3.2.3.1, would be too time consuming without ig-

noring distant obstacles.

37

i-1 i

goal

Figure 3.14: Reduce Step Size to Avoid Overshoot

3.4 Accurate Goal Pose Acquisition
3.4.1 Step Size Conditioning

Obtaining both positional and rotational accuracy with an iterative algorithm
is a convergence problem. Consider Figure 3.14 which shows a strut payload moving
towards its goal. If the step size, dg;, is too large, the goal will be overshot (as
indicated by the dotted line).

To remedy this, we scale down the step sizes. Within the local planner’s
iterative loop: after dq is calculated but before it is added to the current joint
vector (between steps #1 and #2 in Joint Range Freezing Algorithm), we call the
Step Size Conditioning Algorithm. But first, let us define a “distance measure” by
adding the cartesian distances traveled by each end of the strut and dividing by two.
This distance measure measures both cartesian distance and rotation, and thus, it is
a measure of pose. Using this new measure, let us define distance;_,, in Figure 3.14,
to be the distance traveled by step i — 1, and d to be the distance from step i to the

goal.

38

D

’

[}
beta ~>

Figure 3.15: Range of Acceptable Locations of a Strut in the Gripper

Step Size Conditioning Algorithm:

1. Calculate d and distance;.,.

2. If d < distance;_,, then condition the i** step according to the ratio, d/distance;_;.

Let
d

dq; = dq;_lm. (3.12)
—end of algorithm—

Note that we assume that linearly reducing the step size will linearly reduce
the distance measure. Near the goal, this is a good assumption because we are
dealing with very small joint increments.

With this improvement, we have been able to obtain fine accuracy (to within
mm) at the expense of more iterations. While the convergence properties of our
conditioning algorithm cannot be guaranteed, it does appear to be linear in nature,
i.e., when the position is required to be ten times more accurate, the algorithm

requires ten times as many iterations to achieve that accuracy.

3.4.2 Goals and Subgoals

Figure 3.16: Choosing the Correct Report Size can be Critical

In the interest of speed, it would be advantageous to discriminate between
our “real” goal, and other “subgoals”. A subgoal such as those produced by the
global planner from geometric information does not need to be attained with the
same level of accuracy as the real goal, where we may need to do part insertions,
visual inspections, or other detailed work. Thus, we adjust the stopping criteria for

a successful plan accordingly (in Figure 3.15 alpha > beta and d > D).

3.5 Smoothing

Our step size conditioning may leave the output path with very closely spaced
steps and small oscillations. Trajectory generators and motor controllers do not
respond well to these types of paths. We take a particularly simple one; we accu-
mulate steps until the sum of their norms exceeds a threshold. Then we report that
as one step. We also vary the size of the threshold in proportion to the minimum

robot-obstacle distance to minimize the possibility of collision.

40

As can be seen in Figure 3.16, while this can smooth the path, it can also lead
to undetected collisions. Therefore, the threshold must be chosen carefully (small).
One better method to smooth paths is called string-tightening. This method

averages the changes between steps (see Weaver [4]).

CHAPTER 4
GLOBAL PATH PLANNER

4.1 Sending Different Options to the Local Planner

The local planner is given four chances to establish visibility between inter-
mediate goals. We have added two control options for the local path planner. The
first option sends two labels: one describes the goal as either the real goal, or as
an intermediate goal, and the other describes the starting location as the original
starting location, or as an intermediate one. We have already described how the
local planner will change the success criterion according to the type of goal in Sec-
tion 3.4.2. It will also only plan lift-off and approach offsets if the start and the
goal, respectively, are real.

The second option controls the magnitude of the lift off and goal approach

offsets.

4.2 More Subgoals

The global planner is only as good as the choice of intermediate goals, or sub-
goals. If there are too many subgoals, the planner will be slow, in fact, O(m?) where
m is the number of subgoals. But if there are too few subgoals, then the planner
may not find any solutions. Munger placed subgoals at the corners of tetrahedra,
and we have added more subgoals near the edges of triangles (see Figure 4.1).

Through experience, however, we have found that these geometric subgoals
have some undesirable properties. For every strut in the environment there is one
subgoal: too many when building large truss structures. Another problem is that the
subgoals are placed without regard to either the final goal or the starting position.

Often these subgoals are invisible.

41

42

Figure 4.1: Two Geometric Objects and Their Subgoals

We have devised one solution for both problems. After every failure of the local
path planner to establish visibility between nodes, we create two subgoals around
the obstacle which was closest to the robot when the local algorithm failed. This
obstacle probably caused the failure, so it needs to be avoided. The two subgoals are
placed offset from the obstacle (in this case a strut, see Figure 4.2) along the normal
to the plane defined by the obstacle’s axis and the line connecting the obstacle to
the center of the goal. See Chapter 8 for examples of this type of subgoal’s success.

While this type of subgoal produces two subgoals per obstacle, it only does
so for those obstacles from which we have encountered interference. The worst
case is worse (O(4m?)), but the average case will have fewer subgoals (m will be

significantly reduced).

43

closest:'obstacle at failure

- - - g
-

- -
rd

Vel " failed pa;l;
start

new subgoals - il

Figure 4.2: Subgoals Around Blocking Obstacles

CHAPTER 5
SOFTWARE IMPLEMENTATION

The algorithms described in the previous chapters have been implemented in C
running under UNIX on CIRSSE’s Sun 3/60, Sun 4/350, and SPARC workstations.
The algorithm can run on its own or as a client within a distributed application in
the CIRSSE Testbed Operating System (CTOS, see Chapter 6). In either case, the
algorithm is the same except for a few modifications in the interfacing procedures.
The algorithm is portable to other computer systems with the exception of the
CTOS interface and the graphics interface. Since the basic structure of the software

has not changed, this chapter repeats many of Munger’s descriptions.!

5.1 Programming Concepts

We divide the code into 19 modules for organization, compiler friendliness, de-
bugging, and reprogramming. Each module consists of a C code file (filename.c)
and a header file (filename.h). This division is a way to hoard information “pri-
vately” within a module while sharing “public” information with other modules.
The code files contain the private constants, type definitions, and variables, as well
as the public and private procedures. ‘The header files contain public constants,
type definitions, variables, and procedure declarations. Within each header file is a
complete description of its public procedures, sufficient to enable a user to use those

procedures.

5.1.1 Module Hierarchy

If module A uses public information in module B, then module A is said to

be “higher” in the program hierarchy. There are two degrees to which module A

1Sections marked with a * are either paraphrased or taken directly from Munger [1], pp. 44-66.

44

45

can use module B. If A’s code file #includes B’s header file, then A has access to
all of B’s public features. For example, A can call public procedures defined in
B. However, if a procedure in A returns a value whose type is defined in B, then
A’s header file must also #include B’s header file so that B’s type definitions are
available to modules whicb wish to use A. This causes a problem, however, if a
module which includes A’s header file also includes B’s header file: B’s header file
will be included twice. To avoid this, we surround every header file’s code with a

unique labeling structure that ensures that every header file is included only once.

#ifndef UNIQUE_MODULE_LABEL
#define UNIQUE_MODULE_LABEL

module’s constants, typedefs, declarations .

#endif

Figure 5.1 shows the path planner’s complete module hierarchy. Solid lines
represent normal links and dashed lines represent an inclusion of header file in header

file. The arrows point from the included file to the including file.

5.1.2 Variables

In order to keep modules as separate as possible, program-wide global variables
are banned. Although global variables are used extensively within modules, they
are not shared with other modules (i.e. they are static). Thus data transfer
between the modules is carried out solely in the procedure arguments. There are,
regrettably, two exceptions to this rule: gsmTid and ppTid are task identification
numbers used by CTOS to facilitate message passing and are needed in many path

planner modules (wherever CTOS is used) so these were given global scope.

46

E :
& | 1 2
g =
1 g — ,
. : v 2
< © : o] g
'
<t-r--- " 1
' : [N .
o]
".. _ "
P R R R i el ittt]]
v 8 Ml
¥ 1 i — .
P R g | R
= e RN | 1
m v &Il ' ""
t
¥ " g
s T
4 Y * W. T
/ A + .. -
A b~
Cp Bt L I s | [o 3
\ m . v o ‘e E
cenid G- [m. !) 1
8 v - X < uo"c. ||||||||| iy g il
.4m m v : - .“ 4=y ."|
'
6o ' ma.-- ol T
4 Vo \ = AR -
11 T < -r-
E ¥ ! ; - .t .
LI I |) A --] ..B..
& Vi " ; i -
= 111 g) ' -+
Y] [] m '
AR ! ! vy !
) G M u .."
) Lo)
08 W £ SO i Z
§ et . S .
[=] < {-~""""f~ """ """ TTTTTTosoommmt _"_ « 7]
‘" W B e N
T
E o DT IITITIIIITIIIIITTIIITIIIiCo
A lll

usrFlags

o~ —

global

Module Hierarchy

Figure 5.1

47

5.1.3 Data types*

In order to keep strict control over public data types, user modules are allowed
only limited access to other modules’ public data types. Users are not permitted to
directly access data items within another module’s public data type. Controlled ac-
cess, however, is provided in the form of public procedures in the supplier’s module.

For example, a typical data type may be defined in the header file:

typedef struct complex

{
double real;
double imag;
} COMPLEX

This could represent a data type for a module which implements operations
on complex numbers. As a convention, all instances of data types printed in all up-
percase letters are allocated in heap memory. These data types all have procedures

to create new instances and procedures to kill old instances:

COMPLEX *New_Complex ()
void Kill_Complex (COMPLEX *x)

Other procedures are provided as needed, such as (for our example) Set, Add,
Sub, Display, etc.. Since other modules are not allowed to access the structure

directly, statements like the following, while perfectly legal in C, are not allowed:

c->imag = 2.0;

X = c->real;

A procedure that adds two complex numbers 4 + 5 and 2 — 8: would look

something like:

48

¢

#include ‘‘complex.h’’

void Example ()

{
COMPLEX =*a, *b, =*c;

a = New_complex ();
b = New_complex ();
c = New_complex ();

Set_Complex (a, 4.0, 5.0); /* set a to 4+5i */

Set_Complex (b, 2.0, -8.0); /* set b to 2-8i =/

Add_Complex (a, b, c); /* add a and b and put the result in c */
Display_Complex (c); /* print the result */

Kill_Complex (a); /* remove instances from heap memory */

Kill_Complex (b);
Kill_Complex (c);

It may seem that this requires alot of extra effort. However, the idiom is easily
mastered. A little extra sweat now is rewarded with greater speed, and later, when

a data type needs to be changed, only the owning module needs to be updated.

5.1.4 CIRSSE’s Make

All the program’s modules can be compiled using a CIRSSE version of the
UNIX utility make called cmkmf. By having the dependency tree information and
checking the time/date stamp on every file, cmkmf can decide which files need to be
recompiled and linked. The information on dependencies resides in a file called
Imakefile which reflects the hierarchy shown in Figure 5.1. See CIRSSE Re-
port #128 and Tech Memo #16 for details on the use of cmkmf (see Appendix A for

an example Imakefile).

5.1.5 Compiler Flags

Within “usrFlags.h” are four #define’d flags which allow us to use the same

code for both UNIX and CTOS demonstrations. By bracketing system dependent

49

code in #ifdef FLAG ... #endif pairs, code can be hidden and unhidden by
undefining or defining, respectively, the FLAG.
The flags and their effect, if defined:

CTOS_ACTIVE Indicates that we are running as part of a CTOS application.

Activates the proper display devices.

PREVIEWER Only defined if CTOS_ACTIVE is defined. Indicates that we are
running as part of a larger demonstration which handles graphics on its own.
We are only responsible for the bare minimum: the output path and any error

messages.
DIAGNOSTICS Displays a full array of state information with every step.

MAN_IN_LOOP If not in PREVIEWER mode, query the user for acceptability

of paths found; if not acceptable, plan another path.

5.2 The Modules

Here, we describe each module of the program starting from the bottom to the

top of the hierarchy. The same descriptions can be found in the modules’ header

files.

5.2.1 The “usrFlags” module

This header file is included into the global module’s header file (so it is included
in all the modules). It contains four flags which specify compile time options (see

Section 5.1.5).

5.2.2 The “global” module*

This module is included by every other module of the program. It includes

the two standard header files stdio.h and math.h, defines the boolean data type

50

and provides standard procedures for displaying error conditions on the screen. It

also contains a customized version of the atan?2 function.

5.2.3 The “spec” module*

This module provides information about the machine the program is running
on, including the availability of a graphics screen and whether or not the screen has

color capability.

5.2.4 The “Ist” module®

The list module provides a way of putting any type of data into a sequential list.
A list consists of a main list data structure (LIST) and a number of list elements
(LIST_EL) representing the data elements. These list elements are dynamically
allocated, so no information about the list’s length is needed at compile time. This
is the main advantage of using this module over using a simple array.

The LIST.EL data type contains a pointer “next” pointing to the next LIST_EL
in the list and a pointer “data” that points to the listed data element, thus a simple
forward chained list is implemented. However, this chaining mechanism is totally
hidden in the module, so the fact that the user’s data types must be stored in a list
has no impact on their internal structure.

Lists are built by adding elements to either the beginning or the end of the list.
The most common way of reading a list is by sequential access using the procedures
“Get_First” and “Get_Next”.

This module also provides random access, but since this procedure must go
through the chain of list elements, the access is slow for long lists. To improve
random access performance, the module allows the creation of an index array. This
regular C array (in a contiguous block of memory) contains pointers to the data

elements, thus array-like list access becomes possible. However it must be noted

3l

that every change in the list caused by adding or deleting an element automatically
destroys the index, so indexed list access is only possible if the list is not changed

after the index is created.

5.2.5 The “stack” module*

The stack module provides a way to organize any type of data in a stack (LIFO
- buffer). Every data entry is represented by an instance of STACK_EL. This data
structure holds a pointer to the user’s data and a pointer to then next instance.
Access to the stack is accomplished by the procedures “Push” and “Pop”. The

procedure “Read_-Top” reads the latest entry on the stack without removing it.

5.2.6 The “vector” module*

The vector module provides three data types:
e column vector with 3 elements
e 3x3 matrix
e 4x4 homogeneous matrix with 4th row omitted (assumed [0 0 0 1])

The elements of a vector are doubles, the columns of the 3x3 matrix are vectors and
the homogeneous matrix is comprised of a matrix for the first three columns and a
vector for the 4th column. Unfortunately, all three data types are used as normal
variable declarations; no instances of these types are allocated in heap memory. This
causes much unnecessary passing of structures.

The module also provides a set of useful operations on vectors and matrices.
The distance computations for line segments and planar segments are implemented

here (see Appendix E).

52

5.2.7 The “alg” module*

This module provides a set of operations on m by n matrices (linear algebra).
The basic data structure is a variable (VAR) which may be a matrix, a vector or a
scalar. A variable automatically adapts its size to a matrix that is assigned to it, so
the user doesn’t need to know the dimensions of the result of an operation ahead of
time.

There are some element oriented functions that require the specification of row
and column values (typically parameters r and c). As a convention, the first row or
column is number 0, so the element in the top left corner has row and column indices
(0, 0). Names of functions returning a value of type VAR begin with a capital V
(example: Vadd).

All functions returning a BOOLEAN return TRUE if they complete success-
fully and FALSE if a problem is encountered.

All assignments must be made using the procedure 'Put (expr, v)’ which puts
the result of expression ’expr’ into variable 'v’. For example, the assignment X =
A + B * C is programmed as follows:

Put (Vadd (A, Vmult (B, C)), X); /* correct. */

Note that direct pointer assignment will not work. The following statement is

wrong: _
X = Vadd (A, Vmult (B, C)); /* wrong ! */
The following example program will assign values to A, B and C, will evaluate

the expression A + B C, assign the result to X and print it on the screen.

20 0
C= (5.1)
3 13 -1

A=

#include "alg.h"
main ()

53

{
VAR *A, *B, =*C, *X;
Init_Var (); initialize module
A = New_Var (); make the variables

B = New_Var ();
C = New_Var ();
D = New_Var ();

Put (Vuser (2, 1, 1.0, makes A the 2x1 variable [1.0]
3.0), A); [3.0]

Put (Vuser (2, 2, 2.0, 0.0, makes B the 2x2 matrix [2.0 0.0]
1.0, 3.0), B); (1.0 3.0]

Put (Vuser (2, 1, 0.0, makes C the 2x1 variable [0.0]
-1.0), C); [-1.0]

Put (Vadd (A, Vmult (B, C)), X); evaluate A+B*C, put result in X

Print_Var (X); print X on the screen

Kill_Var (A); free space

Kill_var (B);

Kill_var (C);

Kill_var (X);

Exit_Var (); exit module

5.2.8 The “graph” module*

The graph module provides a way to organize any kind of data in a directed
or undirected graph. The data structure consists of a main structure (GRAPH) and
the two structural elements GUNODE fpr the nodes (vertices) and G_.EDGE for the
edges of the graph.

The GRAPH data structure contains a list of the graph’s nodes. Every node
in turn has a list of adjacent edges. If the graph is directed, then the node’s list
centains only adjacent edges that are pointing away from that node. Every edge
has two pointers to the two nodes it is connected to. These two pointers are called
'nodel’ and 'node2’. If the graph is directed, the edges are always pointing from
'nodel’ to 'node2’. Both the edges and the nodes have a pointer to a data structure

in the user’s module. In an example of a graph representing cities and connecting

94

roads the nodes would contain a pointer to CITY and the edges a pointer to ROAD.
Only the user’s data structures are used for communication between the modules so
the internal structures GINODE and G_EDGE are invisible for the user.

An edge in a graph always has an associated weight that represents the cost
of traversing the edge. In directed graphs, the edges cannot be traversed in the
wrong direction, it is however possible to define two edges between the same two
nodes having opposite directions and different weight values. This weight value is
not passed to the edge at the time the graph is being established, but the user must
provide a weight function that returns the weight of any edge to the graph module.
This way the graph module can query the weights whenever they are needed and no
unnecessary weights are computed. If the computation of the weights is complicated,
then this feature can save a considerable amount of computing time. Once the weight
is computed, it is stored in the edge structure, so the computation is done only once
per edge. This implies that an edge’s weight cannot change during the lifetime of
the graph.

The module offers procedures for building, changing and deleting graphs, and
the graph search algorithm A*. There is also a set of utility functions for navigation
in the graph structure, but these functions are not accessible from outside the graph
module. They are intended as tools for development of new graph algorithms and

are documented in graph.c.

5.2.9 The “parser” module*

The parser module provides a convenient way of reading information from an

input text file. The text in the file must conform to the following syntax:

S {expression}

expression = keyword (par_list]

par_list = ’'(’{parameter ’,’} parameter ’)’
keyword = string

33

parameter = string

string = {char} char
char = A 020 ' ‘a’,.’2! | '9?..?9? l
1 g | | | L I ‘g l » 0

In this syntax description, S is the start symbol, lowercase words are nontermi-
nal symbols and characters in single quotes are terminal symbols. An expression in
braces can be repeated any number of times (including zero times) and an expres-
sion in square brackets [] is optional. If there are a number of expressions separated
by bars — then either expression is legal at this point.

Examples for legal commands are:

ADD (5, 6, 7, -11.5)
Exit_Program

savekquit (foo.c)

The parser module will first read a user specified source file, parse it according
to above syntax, store the data in a list of expressions and return this list to the
user. The order in the list corresponds to the order in which the expressions are
encountered in the source file. If there are syntax errors, they will be printed on
the screen. The module offers a variety of interface procedures that enables the
user to read the data in a convenient manner. Expressions can be read from the
list sequentially as it is normally done with lists. Lists can also be scanned for
the next occurrence of an expression with a particular keyword. An expression is
a data type (EXP) that also has some procedures associated to it. The user can
read an expression’s keyword string, the number of parameters in the expression
and a particular parameter string given by its number in the parameter list. Finally
there are utility procedures that convert a parameter string to a real or an integer

number. This is necessary since all parameters are handled as arbitrary strings.

56

5.2.10 The “model” module

This module provides a geometric primitive which is useful for the modeling
of solids. The primitive is described by two or three points pl, p2, and p3, a
radius r, a direction vector dir, a task identification id, and a “type”. If the type
is STRUT.TYPE then the object is obtained by moving a sphere of radius r on a
straight line from point pl to point p2 (a cylinder with spherical caps). If the type is
TRIAN_TYPE then the object is a triangular planar segment whose boundaries are
defined by pl, p2, and p3. This plane segment has a volume equal to that swept out
by a sphere moving through every point in the plane segment. The “dir” element
describes a subgoal’s approach vector. "id” is used for graphics object identification
when running with CTOS applications.

Procedures are provided to read and change the model’s parameters and to
compute the minimum distance between two swept sphere models using procedures

in the vector module.

5.2.11 The “graphics” module

This module currently serves two purposes. It was originally programmed
using SUNcore graphics for use on SUN machines. This capability has been main-
tained, even though it is outdated and being phased out. More recently, an X
Windows graphics viewer has been written by Nicewarner [30] and is incorporated
in our graphics module.

“SUNCcore allows line and character drawing in three dimensional space. Colors
are used if the monitor allows and if black and white mode is not explicitly selected.
After initialization, a three dimensional coordinate system is displayed. There are
procedures to create segments — an entity that holds a number of primitives —
and others to create lines and characters at arbitrary locations in three dimensional

space.”

37

“Other procedures allow the user to insert primitives into a segment and delete
them from segments. Yet another procedure allows the user to rotate the current
picture around the vertical and the horizontal axis of the screen by moving the mouse
horizontally or vertically, respectively. This mode ends in the current orientation
when the middle button is pressed. The reason for using segments is the segment
concept of SUNcore. SUNcore segments do not provide any way of deleting single
primitives stored in them, so the whole segment must be deleted and reconstructed
in order to delete one primitive. This module automatically deletes and reconstructs
the SUNcore segments as needed. Unfortunately, this process is visible on the screen,
especially on slow machines. The segment concept allows the user to split the picture
into parts, avoiding the reconstruction of the whole picture when a single primitive
is deleted.”*

If X Graphics are selected, then we rely on the graphical viewer written by
Nicewarner [30]. If we are running on UNIX as a stand-alone program, then the
output is in the form of a file readable by the viewer interface. If we are running as
part of a CTOS application, then we send the Geometric State Manager messages
directly. We can create, delete, and move struts and links. These struts and links

must be defined in .cgm files.

5.2.12 The “env” module®

“env” stands for environment, so this module holds all data about items that
belong neither to the robot nor to its payload. At initialization, the module reads
the locations of the struts and planes from the parsed source file and informs the
graphics module.

Procedures are provided to get models of struts, planes, and intermediate steps

currently in the environment and to add and remove them.

58

Procedures are also provided for extracting tetrahedra and triangles and plac-
ing intermediate steps around them. Whenever a strut is added or removed, all
intermediate steps are deleted and then re-established based on the new environ-

ment.

5.2.13 The “robot” module*

This module models a single chain robot with an arbitrary number of links.
The description of the robot’s kinematics, model geometry, joint ranges and so forth
are stored in a file robot.def, so that the files robot.c and robot .h are applicable
to any single chain robot without change. The robot’s kinematics are described
using modified Denavit Hartenberg parameters (see Craig [27]).

This module maintains a set of transformation matrices that represent the
transformation from each link to world coordinates. Derived from the modified
Denavit Hartenberg parameters [27] and the current joint vector, they are updated
each time the robot changes its joint vector. The module also maintains a swept
sphere model of each link. These models are not automatically updated when the
joint vector changes, since this process is time consuming and not always necessary.

The module provides three procedures to alter the robot’s state: the robot’s
joint vector can be set, a part can be added to, or removed from, the gripper.

Various readout procedures suppfy information about the current position of
the link models, the type of a particular link (revolute or prismatic), the origin and
the axis of the joints, the current value and range of each joint, which joints are out

of range, and whether the robot is carrying a payload or not.

5.2.14 The “lpath” module

The path planning algorithm using potential fields is implemented in this mod-

ule. The user must specify which arm to plan for, the rotation-type, the departure

59

and approach offsets, the initial joint vector, and the desired goal pose. The module
will return a list of joint vectors that describe a path leading there. If this is not

possible, it returns a FALSE.

5.2.15 The “gpath” module

The global path planning algorithm using graph search is implemented in this
module. It establishes a list of joint vectors describing a path that leads from the
current joint vector to a goal position defined in cartesian space. It may call the
local path planner several times on the whole task or on part of it. It may also query
the local planner for information about failures in order to set up subgoals. The
global planner may be called on repeatedly, and it will return a different path each

time until it can find no more new paths, then it will return the first path found.

5.2.16 The “ppmain” module

This module provides the interface between the planning algorithm and higher
level coordinators. The procedures contained within this module are invoked by ei-
ther the main module or the PathPlanner module. There are procedures to initialize
and shutdown the path planner. There are procedures to read instructions from a
file and to output paths to a file. A procedure which parses and executes the input

file is also provided.

5.2.17 The “main” module

This module is used exclusively when running the planner in its UNIX stand-
alone mode. CTOS_ACTIVE must not be defined in “usrFlags.h”. This module parses
and executes an input file.

The available input file commands are listed in Section 5.3, below.

60

5.2.18 The “PathPlanner” module

This module is the event handler for CTOS messages coming from the higher
level coordinator, currently the dispatcher petri-net. It handles all the standard
CTOS messages and also plans paths, re-plans paths, does inverse kinematics, and
can run input files. The messages’ definitions are in ppLib.h and their calling
procedures are in ppLib.c. This procedure is the communications highway between
the path planner and the application coordinator.

Refer to Chapter 6 for a discussion of CTOS and message passing.

5.3 The Input File

The input file is an auxiliary input source for testing the program. It can also
be used to set up the environment when embedded in a larger program.

There are two types of commands found in the input file: static commands
and sequential commands. The static commands are read at initialization time and
their order does not matter. The planner executes the sequential commands, in
order, of course.

We describe a strut in space in two ways. First, we can describe it by its
endpoints. This requires six parameters, three for each cartesian space endpoint. For
the remainder of this section, the parameters (x1, y1, z1, x2, y2, z2)will denote
the two cartesian endpoint vectors of a strut with respect to the world coordinate
system.

A strut within a tetrahedral structure has a simpler description. By defin-
ing the position and orientation of a tetrahedral structure, all struts within that
structure can be described by a tetrahedron number and a strut number within
that tetrahedron according to the numbering system shown in Figure 5.2. p is the

position of the structure, and rl and r2 are the orthogonal orientation vectors of

Xo

Figure 5.2: Tetrahedral Structure Numbering Conventions

61

62

the structure with respect to the world coordinate frame (Xo, Yo, Zo). The coor-
dinate system (x, y, z) is used to specify a tetrahedron in the structure. The length
of the system’s unit vectors ex, ey and e; is equal to the length of a tetrahedron’s
edge (the sum of a strut length and two times the node connector length). Now we
can describe any tetrahedron by an ordered triple of integers. For instance, (2, 1,
0) describes the “O” tetrahedron in Figure 5.2, (O = p + 2ex + ley + Oe;). The
“Q” tetrahedron also shows the numbering system for a particular strut within a
tetrahedron. Thus we can describe struts with four integers, once the structure’s
position, orientation, and unit length have been specified. For the remainder of this
section, the ordered quadruple (X, Y, Z, N) will denote such a strut.

The following are the static commands:

¢ STRUTLENGTH (1)

| specifies the length of all struts in the environment.

« NODELENGTH (1)

| specifies the length of all nodes. Together with STRUTLENGTH defines the

unit length of the tetrahedron structure.

e STRUCTURE_LOC (px, py, pz, rlx, rly, rlz, r2x, r2y,r2z)

Defines the location of the tetrahedral structure with respect to world coordi-

nates. The parameters are vectors p, rl, and r2 from Figure 5.2.

¢ SUBGOAL (x1, y1, z1, x2, y2, z2)

Defines an intermediate goal which the global planner puts in its Graph search.

The endpoints will be automatically adapted to the strut’s length.

e STRUT (x1, y1, z1, x2, y2, z2)
STRUT (X, Y, Z, N)

63

A strut is added to the environment at the given location. The strut will

automatically be adapted to the strut length such that the center stays fixed.
TETRA (X; Y, Z)

Six struts of a tetrahedron are added to the environment.

PLANE (x1, y1, z1, x2, y2, 22, x3, y3, z3, x4, y4, z4)

A plane object is created with the four vertices given. See AppendixE.

ROBOT (px, py, Pz, rlx, rly, rlz, r2x,r2y, r2z)

Orients the robot’s zero frame with respect to the world coordinate system.
Vector p denotes the origin of the robot’s zero frame, r1 denotes the orientation
direction of the robot’s z axis, and r2 denotes the orientation direction of the

robot’s y axis.

X_GRAPHICS, SUN_GRAPHICS

Selects either X Window or SUNcore graphics to be displayed.

ZOOM (z)
If SUN_GRAPHICS is active, then z is the magnification of the display.

B&W

If SUN_GRAPHICS is active, then the graphics are displayed in black and

white.

DIAGNOSTICS

Activates debugging print statements for display during execution.

STEP

Pauses execution of planner after each step.

64

This second list shows the sequential commands which must be between the
START and the QUIT commands.
e START
Denotes the beginning of the command sequence.
¢ MOVE (x1, y1, 21, x2, y2, z2, dx, dy, dz)
MOVE (X, Y, Z, N, dx, dy, dz)

Plans a path that leads the payload strut (real or imaginary) to the indicated
goal. d is the approach direction, and -d will be the next MOVE’s departure

direction. The very first MOVE has no departure direction.
e GRASP (x1, yl, z1, x2, y2, z2)
GRASP (X,Y,Z,N,)

The strut closest to the position specified is removed from the environment
and put in the robot’s gripper. The environment recomputes intermediate

steps around tetrahedra and triangles.

¢ JOINTS (thetal, theta2, ... , thetaDOF)

Sets the robot’s joints to the joint vector specified. Units are in degrees for

revolute joints and meters for prismatic joints.
¢ UNGRASP (x1, y1, z1, x2, y2, z2)
UNGRASP (X, Y, Z,N)

The payload is released and added to the environment at the specified position.

The environment recomputes intermediate steps.

e UNGRASP

Unlike the other two UNGRASP commands, the payload is released at the

exact location the robot has brought it to.

65

e ADD_STRUT (x1, yl, z1, x2, y2, z2)
ADD_STRUT (X, Y, Z, N)

A strut is added to the environment at the indicated position.

¢ REMOVE_STRUT (x1, yl, z1, x2, y2, 22)
REMOVE_STRUT (X, Y, Z, N)

The strut closest to the indicated position is removed from the environment.

e VIEW

If SUN_GRAPHICS is defined, then execution of the command sequence stops
and the user can use the mouse to change the orientation of the display. Exe-

cution resumes when the user presses the middle mouse button.

e LEFT_ARM, RIGHT_ARM

Selects which robot arm will be effected by all subsequent commands.
e QUIT

Denotes the end of the command sequence.

Appendix B lists a typical input file. The input commands can be in either

large or small case.

CHAPTER 6
CIRSSE TESTBED

6.1 Physical Plant

At the center of CIRSSE’s testbed are two, nine DOF robotic manipulators,
each consists of a PUMA, six DOF articulated arm, mounted on a three DOF cart.
The two carts are mounted on a single linear track (see Figure 6.1). The manip-
ulators are controlled by a host of single board computers mounted on a VME
cage running VXWORKS, a real-time operating system. The VME cage is then
connected by ethernet to several UNIX based Sun 3's and Sun Sparcstations, a Dat-
acube vision system, the PUMA arm controllers, and the Aronson cart controllers.
The manipulators are also aided by several sensors: a pair of stereoscopic cam-
eras and a laser are mounted in the ceiling while the manipulator’s wrist carries a
force/torque sensor and another camera. A good introduction to the robotic testbed

is Nicewarner’s Tech Memo #22.

6.2 CIRSSE Planner Requirements

The current goal of the CIRSSE system’s demonstration is to autonomously
build the triangular base of a tetrahedron. This requires the planner to be able to
plan paths from the rack which holds the struts to the table where the triangle will
be assembled. The paths must avoid three obstacles: the table, the strut rack, and
the struts in the strut rack.

In the future, a planner will be needed to coordinate the two arms so they can

jointly build a tetrahedron. This is beyond the current capability of our planner.

6.3 Software Architecture

66

67

Figure 6.1: CIRSSE Testbed Robots

CTOS
Application: Demo 1
Dispatcher
(Petri Net)
Vision . message lines _ Motion
Control , Control
Record PathPlanner Geometric
Display State

Window Manager

Figure 6.2: Demo 1 Application

68

TN A C
N

csscemescncnsof SN » 0 0 lececcacsea:

...................

Figure 6.3: Nodes and Transitions

At CIRSSE, the pathplanner is just one of many “tasks” working together
in an “application”. The pathplanner algorithms were described in Chapter 5.
This section will describe the planner’s implementation within a CTOS application.
CTOS (CIRSSE Testbed Operating System) was developed to handle multi-task
applications. For a full description of CTOS, see Tech Memo #5, Tech Report #97,
and Tech Report #128.

Each task is a separate program with its own string of execution. Tasks can run
on different CPU’s, or even, different computer systems. A group of tasks working
on a job, called an application, communicate their work via “messages”. CTOS
messages contain two important pieces of data: a message identification number
and a data block. CTOS makes it possible for complex jobs to be broken up into
manageable pieces, which can be programmed and debugged separately by separate
programmers.

Figure 6.2 shows how the path planner fits in with the other tasks at CIRSSE.

69

The dispatcher is implemented in the form of a petri-net, a token-based flow-
chart which is designed to organize command flow. There are two basic units to a
petri-net: nodes and transitions. Nodes hold data, while transitions are programs
that use the data from the node. Referring to Figure 6.3, if the two nodes A and
B are occupied by a token then the transition will fire and a token will be put in
nodes C and D. Firing a transition is equivalent to executing a program, the output
tokens are the products of the program.

The petri-net is a large, CTOS application executive. The it is like a director:
when the script says that the robot needs to move, the dispatcher asks the planner
for a path. After the planner returns a path, the dispatcher notifies the motion
controller, and finally, the motion controller moves the robot.

All commands are all passed by CTOS messages. Therefore, each task must
have access to the other tasks’ message commands. By convention, the message
identification numbers are defined in a Lib.h file, while the messages themselves
are sent by a procedure in the corresponding Lib.c file. For example, when the
dispatcher wants a path planned, it calls ppPlanPath() from the ppLib.c library.
Then ppPlanPath() will send the CTOS message MSG_PP_PLANPATH, which is de-
fined in ppLib.h, and other necessary data to PathPlanner.c by invoking the CTOS
command msgBuildSend(). The path planner will return the path by invoking the
command msgReply(), see details of tﬁ&se CTOS commands in Tech Report #128.

The path planner’s defined messages, their calling procedures, and actions are:

MSG_PP_INITIALIZE--ppInitialize() initializes the planner; must be called be-

fore the planner is used for the first time.
MSG_PP_SHUTDOWN--ppShutdown() frees the data in lists, var’s, and graphics.
MSG_PP_STARTPATH--ppStartPath() sets the planner’s internal robot’s joint vector.

MSG_PP_PLANPATH--ppPlanPath() executes path planning algorithm; returns a list

70

of joint angle knot points in a file.

MSG_PP_REPLANPATH--ppReplanPath() re-executes path planning algorithm with
the same data as in the most recent ppPlanPath(); returns the next A* algo-

rithm path.

MSG_PP_ALTPLANPATH--ppAltPlanPath() calls an alternate path planning strategy
(see Lefebvre [29]).

MSG_PP_INVKIN--ppPotInvKin solves inverse kinematics problems by using the path

planner; returns the goal’s joint vector.

MSG_PP_DEMO_EXEC--none This message is sent by a stand-alone test program named

AppExec; it is used to execute Munger’s simulation input files.

PathPlanner.c is commonly called an event handler. When a message is
sent to the path planner, CTOS calls a function PathPlanner() and passes it
the message’s identification number and a pointer to the message’s data block.
PathPlanner() then decodes the message, using a case statement, and calls the

proper functions in ppmain.c (see Figure 5.1 and Section 5.2.16).

6.4 Compiling the PathPlanner Using CMKMF

As described in Chapter 5 the path planner can be compiled by typing cmkmf
PathPlanner from within the directory which contains an Imakefile describing the
planner’s hierarchy (currently: /home/tseng/CIRSSE/pathplanner/graphicstest.
That directory also includes the definition of CIRSSE’s robot testbed in robot.def.
Thus after the path planner is compiled it will only plan paths for CIRSSE’s robot.
In Chapter 7 when we want to plan paths for the NASA Langley robot, we will have

to change the robot.def file to define the Langley robot.

71

6.5 Executing CTOS Applications

After the application is built using cmnkmf, it is almost ready to be executed.
First, a configuration file is needed to define the hardware involved in the application,
the tasks which will run in the application, and the CPU each task will run on.
Tech Memo #16 describes how to build the necessary configuration files. A sample
configuration file is listed in Appendix C.

The hardware then needs to be prepped by setting up “application servers”
for each machine involved in the application (app_vin machine_name). Finally, the
configuration file is bootstrapped by invoking app_bts configFileName, which gets
the application running on all the chassis.

The path planner can be run in one of three modes, each of which has its own

directory, Imakefile file, configuration file, and execution procedure.

1. CIRSSE Demo 1. Autonomous part extraction and insertion; full CIRSSE

testbed demonstration. Directory: /home/tseng/CIRSSE/pathplan/ctos. Con-

figuration file: demol.cfg. Execution: app_bts demol.cfg.

2. CTOS Planner Test. Execute auxiliary input file; planner demonstration.
Directory: /home/tseng/CIRSSE/pathplan/graphicstest. Configuration file:
pp-config. Execution: app_bts pp_config; application executive queries “in-

put file?”.

3. UNIX Planner Test. Stand-Alone planner demonstration using input file. Di-
rectory: /home/tseng/CIRSSE/pathplan/unix. Configuration file: none. Ex-

ecution: pp inputFileName.

6.6 Demonstration #1 Paths

The path planner has been tested for all paths in the CIRSSE triangle building

demonstration. Two example paths are shown here. Figure 6.4 shows the robot’s

72

Figure 6.4: Path from Home to the Triangle’s Node

73

9 & 0
1 4
N
goal
17]) S \£ —

7
&

Figure 6.5: Path from Rack to Insertion Point

74

motion from the home (safe) position to the position above the node where the
camera will be used to acquire the triangle structure location accurately. Figure 6.5
shows the path from the strut pick-up point at the rack to the insertion point above
the triangle. These paths are plannable for all rack and triangle poses in the robot’s
workspace.

Although the current CIRSSE demonstration’s paths are simple, uncluttered
free space moves, the planner is capable of producing more complicated paths. Fig-
ure 6.6 shows the CIRSSE robot inserting the last strut into a tetrahedron. In this
example, the local planner cannot find a direct path from the start to the goal,
because the obstacle creates an unavoidable local minimum (b). After the local
planner fails (four times), the global planner creates a subgoal near the obstacle.
The local planner reaches this subgoal (c). Then it is called one final time and

reaches the original goal (d).

75

Figure 6.6: Global Subgoal Assists Local Planner

CHAPTER 7
NASA LANGLEY TESTBED

7.1 Physical Plant

Langley Space Center’s robot consists of a Merlin 6000 six-DOF articulated
arm mounted on a two-DOF cartesian carriage, see Figure 7.1. Another one-DOF
rotating platform holds the truss structure assembly. Since the platform does not
move during the strut insertion process, it is not modeled by our path planner.
The path planner’s model of the eight-DOF robot is stored in a definition file
/home/tseng/Langley/ pathplan/ctos/robot.def, see Section 5.2.13 and Ap-

pendix D.

7.2 Langley Planner Requirements

Currently, the planner must move a strut from a bin into a truss assembly. This
truss structure is more complicated than the current CIRSSE structure. Figure 7.2
shows a “cell” unit. It is an octahedron, an eight sided figure. By placing cells side
by side as in Figure 7.3 [3], we can make arbitrarily large structures.

Figure 7.3 is currently being test assembled at Langley Space Center. The
planner must plan paths for each strut without collision. The main obstacles are
the robot itself, the struts already in the structure, and 12 triangular panels which

are laid above and below the number 1, 2, and 3 cells (forming a pentagon).

7.3 Software

The planner has not been implemented on the Langley Space Center’s com-
puter systems. Our path planner for the Langley arm runs on the CIRSSE com-

puter system using CTOS. Therefore, the discussion in Chapter 5 and 6 on CTOS

76

Figure 7.1: Langley Testbed Robots (model)

Figure 7.2: A Unit Cell

77

Assemply Sequence Map 11 12 Operator's

Guide

120° sf20°

Figure 7.3: Langley Truss Structure with Sequence Numbers

78

79

programming stil' :pplies. We compile the planner by running cmknf in the direc-
tory which contains the Langley robot’s definition in its robot .def file (currently:
/home/tseng/Langley/pathplan/ctos).

Presently, there are only two ways to run the planner:

1. CTOS Planner Test. Execute auxiliary input file; planner demonstration.
Directory: /home/tseng/Langley/pathplan/ctos. Compile: cmkmf AppExec
PathPlanner. Configuration file: pp_config. Execution: app_bts pp_config;

application executive queries “input file?”.

2. UNIX Planner Test. Stand-Alone planner demonstration using input file. Di-
rectory: /home/tseng/Langley/pathplan/ctos. Compile: cmkmf pp. Configu-

ration file: none. Execution: pp inputFileName.

Both methods of execution produce an output file (*.sim) which is readable

by Silma, a professional, graphic robotic engineering package.

7.4 Truss Structure Paths

Our experiments show that the path planner can plan most of the paths for
the Langley testbed. Figure 7.4 shows the path from the strut pick-up point in the
rack to the insertion point above the tetrahedron.

It works fast: most paths are computed in less than fifteen seconds with an
accuracy of plus or minus lmm. Table 7.4 shows the number of calls to the local
planner and the total time that the path planner needed in order to insert the
Langley struts shown in Figure 7.3. If the required accuracy is reduced to plus
or minus lcm, then the computation time drops by approximately 7 seconds (see
Table 7.4). It does not speed up by ten times as one may be led to believe in

Section 3.4.1 because the less accurate paths still must traverse the same amount

Table 7.1: Paths for Langley Robot (1mm accuracy)

Seq.# | Strut# | Time (s) | #calls | comments
1 1 11 1
2 2 17 1
3 3 10 1
4 4 60 4 local plan collides 3 times.
5 5 14 1 near-collision with strut#t1.
6 6 19 1 near-collision with strut#5.
7 7 13 1
8 8 21 1 had hard time acquiring pose.
9 9 23 2 path#1 had a collision.
10 10 29 2 path#1 had oscillations.
11 11 22 1 near a singularity.
12 12 12 1
24 61 75 6 failure, see Section 8.2.

Table 7.2: Paths for Langley Robot (for 1cm accuracy)

Seq.# | Strut# | Time (s) | #calls | comments
1 1 4 1 not 10x faster due to free space.
2 2 9 1
3 3 4 1
4 4 21 3 succeeds on third try.
5 5 7 1 near-collision with strut#1.
6 6 11 1 near-collision with strut#5.
7 7 6 1
8 8 13 1 had hard time acquiring pose.
9 9 18 2 collision.
10 10 20 2 oscillations.
11 11 15 1 near a singularity.
12 12 6 1
24 61 75 6 failure, see Section 8.2.

80

81

Figure 7.4: Path from Rack to Langley Structure Insertion

82

of free space as the more accurate paths: only the last centimeter of the path is ten
times faster.

Figure 7.5 demonstrates the robustness of our local planner. This insertion
into the Langley assembly has very tight tolerances. Munger’s planner either would
have collided with the structure, if his repulsion constant was too small, or it would
have been repulsed by the very large cluster of obstacles, if his repulsion was made
too strong. With the combination of flexible fields and object clustering, our planner
had no problem finding this path.

Unfortunately, not all paths are plannable for the Langley structure. Figure 7.6
shows the final position of the six failed paths for Langley Strut #61. Attempts
numbered 1, 4, and 6 fail due to local minima (which cause oscillations in #4).
Attempt #2 collides due to a combination of factors. The largest of which is that
the Langley gripper is so large that small steps can move the end of the gripper
farther than the THRESHOLD adaptive field (Section 3.2.3). Attempt #3 flips
the orientation of the goal‘s end points and is also rotating the long way around
the axis of rotation; the path is simply too long, so the planner quits. Finally,
in Attempt #5, the robot has been caught in a shoulder-elbow-wrist singularity
(reducing the DOF to only 5). With no obstacles nearby to influence it, the path
stagnates, and the planner quits. Chapter 8, Section 8.2 discusses our flexible field
algorithm’s failure to find a path for this example and future improvements which

may allow it to find a solution.

83

(a) \ o
Su!t Platform
L Carrisge
®

T Tt

©

Cluster

-

Figure 7.5: Example: Tight Fit and Large Cluster

Figure 7.6:

84

CHAPTER 8
RESULTS AND CONCLUSIONS

The performance of the path planning algorithm has been tested for the two testbeds
presented in the previous chapters. Our results and conclusions are presented in this

chapter.

8.1 Computational Complexity

Munger computed the worst case computational complexity of his algorithm
to be O(n®), our improvements’ worst case complexity is also O(n3), therefore we
have not raised the order of complexity.

Let us look at the complexity of our major improvements. First, we reduced
the jacobian matrix to full rank in Section 3.2.1, the gaussian elimination is O(n3).
Next, keeping the joints in range, Section 3.2.2, requires us to recompute the at-
traction joint vector each time a joint exceeds its range, since there are n joints,
the complexity is O(n). Section 3.2.3.1, clustering, has a worst case complexity
O(nm?), where n is the robot’s DOF and m is the number of obstacles. Finally,
our flexible-field, repulsion-control factor, and variable step-size computations have
constant computation times.

Let us note that since n, the robot’s DOF, is constant and usually small,
this parameter is not usually critical. m, on the other hand, is variable and can
be quite large (Langley’s structure has 102 struts and 12 planar panels). Thus, at
first glance, the clustering’s O(nm?) complexity seems to be a problem. However,
two factors significantly lower its complexity. First, we ignore obstacles which are
farther than a threshold distance. Thus, m is lowered to a much more manageable
number, an almost constant number that we could call the environment’s obstacle

density (number of obstacles per cubic meter). Second, the O(m?) complexity is due

85

86

Figure 8.1: Example: Unattainable by Potential Field Method

to direction vector comparisons, a task which is many orders of magnitude faster
than computing obstacle distances (which is only O(m)).

Our experience indicates that in practice, once the robot’s DOF and the en-
vironment’s obstacle density are given, the local path planner is fairly constant,
computationally. A far more vexing problem is that the local planner is called on by
the global planner to establish the visibility of graph edges. In the worst case, it is
called O(n?) times where n is the number of subgoals. Since at worst, the number of
subgoals equals twice the number of obstacles, this is very bad indeed. To eliminate
the worst case, we have set a maximum number of calls to the local path planner
(currently at 6). A better way might be to quit when any global path contains more
than a certain number of nodes, assuming that too many nodes implies that the
path is too contorted.

Finally, Munger’s subgoal extraction algorithm is O(m?) where m is the num-

ber of struts. Our closest-failure-strut approach has a constant computation time.

8.2 Weaknesses

87

Our refinements to the local path planning algorithm have not completely
solved the fundamental problem of local minima. Figure 8.1 shows a Langley truss
structure into which our planner could not insert the strut (see Figure 7.6, Table 7.4,
Strut #61). The insertion would not be difficult if the approach direction was
not pointing from the interior of the structure, outward. This insertion, however,
requires the strut to be slid into the interior of the structure and then rotated to the
correct orientation. Thus the strut must rise against the gradient before it can ride
down to the global minimum; this the local planner will never do. Our subgoals are
ineffective aids because they are parallel to the existing struts and are exterior to
the cell.

Lozano-Perez [6] and Schwartz-Sharir [25] have tried to solve this type of
problem with subgoals at the local minima, but they have had problems because
the attraction well of the local minimum is too large. Barraquand uses random
motions to solve this problem (16]. If speed of computation is not necessary, a
global method may be used; this particular problem has been solved by Weaver’s
Divide and Conquer Planner [4].

The local path planner is an iterative algorithm which converges slowly on
the required accuracy. Comparing the execution times in Table 7.4 and Table 7.4,
the r’na.ximum difference between plans with only one call to the local planner is
8 seconds. One way to save most of these 8 seconds would be to use an inverse
kinematics routine once the local planner had found the goal to within some rough
approximation (1cm). We would thus forgo the many iterations needed to converge
on an accurate solution.

One feature that our algorithm does not provide is the ability to choose the
final configuration of the robot. For reasons of safety, load bearing, and appearance,
the operator may wish to choose the wrist flip, elbow up-down, or shoulder left-right

configuration. These goals could be accomplished by using an attractive force to

C-2

88

the goal configuration instead of the goal EE pose, or by limiting the joint ranges
of the robot.

This concludes the discussion of the proposed path planning algorithm.

1]

2]

8]

[4]

(5]

[6]

(7]

(8]

[9]

[10]

LITERATURE CITED

Rolf Miinger (1991). Path Planning for Assembly of Strut-Based Structures.
CIRSSE Report #91, Rensselaer Polytechnic Institute, Troy, NY.

Rolf Miinger (1992). Assembly Path Planning. Intelligent Robotic Systems for
Space Exploration, ed. Alan A. Desrochers, Kluwer Academic Publishers,
Boston, pp. 155 - 184.

Alan A. Desrochers, editor (1992). Intelligent Robotic Systems for Space
Ezploration Rensselaer Polytechnic Institute, Kluwer Academic Publishers,
Boston.

J.M. Weaver, S.J. Derby (1992). A Divide and Conquer Method of Path
Planning for Cooperating Robots with Stringing Tightening. Fourth Annual
Conf. on Intelligent Robotic Systems for Space Exploration, Rensselaer
Polytechnic Institute, Troy, NY, pp. 30 - 40.

Tomds Lozano Pérez, M. A. Wesley (1979). An Algorithm for Planning
Collision-Free Paths Among Polyhedral Obstacles. Communications of the
ACM, Vol. 22, 10, October 1979, pp. 560 - 570.

Tomas Lozano Pérez (1983). Spacial Planning: A Configuration Space
Approach. IEEE Transactions on Computers, Vol C-32, No. 2, February 1983,
pp. 108 - 120.

Francis Avnaim, Jean Daniel Boissonnat, Bernard Faverjon (1988). A
Practical Ezact Motion Planning Algorithm for Polygonal Objects Amidst
Polygonal Obstacles IEEE 1988 International Conference On Robotics &
Automation, Vol. 3, pp. 1656 - 1661.

Walter Meyer, Powell Benedict (1988). Path Planning and the Geometry of
Joint Space Obstacles. IEEE 1988 International Conference On Robotics &
Automation, Vol. 1, pp. 215 - 219.

Karen Anderson, Jorge Angeles (1989). Kinematic Inversion of Robotic
Manipulators in the Presence of Redundancies International Journal of
Robotics Research, Vol. 8, No. 6, December 1989, pp. 80 - 97.

Jorge Angeles (1985). On the Numerical Solution of the Inverse Kinematic
Problem. International Journal of Robotics Research, Vol. 4 No. 2, Summer
1985, pp. 21 - 37.

89

90

[11] J. Angeles, K. Anderson, X. Cyril, B. Chen (1988). The Kinematic Inversion
of Robot Manipulators in the Presence of Singularities. Transactions of the

ASME, Vol. 110, September 1988, pp. 246 — 254.

(12] R.A. Brooks, T. Lozano-Pérez (1983) A Subdivision Algorithm in
Configuration Space for Find-Path with Rotation. Proc. of the 8th Int. Joint
Conf. on Artificial Intelligence, Karlsruhe, FRG, pp. 799 - 806.

[13] Sungteg Jun, Kang G. Shin (1988). A Probabilistic Approach to Collision-Free
Robot Path Planning. IEEE 1988 International Conference On Robotics &
Automation, Vol. 1, pp. 220 - 225.

[14] Brad Paden, Alistair Mees, Mike Fisher (1989). Path Planning Using a
Jacobian-Based Freespace Generation Algorithm. IEEE 1989 International
Conference On Robotics & Automation, Vol. 3, pp. 1732 - 1737.

[15] C. DeMedio, F. Nicold, G. Oriolo. Robot Motion Planning Using Vortez
Fields. New Trends in System Theory, Genova, Italy, July 1990.

[16] Jerome Barraquand (1991). Automatic Motion Planning for Complezx
Articulated Bodies. Digital Computer Inc., Report #14, June 1991.

[17] Richard Volpe, Pradeep Khosla (1987). Artificial Potentials with Elliptical
Isopotential Contours for Obstacle Avoidance IEEE Proceedings of the 26th
Conference on Decision and Control, Vol. 1, December 1987, pp. 180 - 185.

[18] P. Khosla, R. Volpe (1988). Superquadric Artificial Potentials for Obstacle
Avotidance and Approach. Proc. of the IEEE Int. Conf. on Robotics and
Automation, Philadelphia, PA, 1778 - 1784.

(19] E. Rimon, D.E. Koditschek (1989). The Construction of Analytic
Diffeomorphisms for Exact Robot Navigation on Start Worlds. Proc. of the
IEEE Int. Conf. on Robotics and Automation, Scottsdale, pp. 21 - 26.

[20] Yutaka Kanayama (1988). Least Cost Paths with Algebraic Cost Functions.
IEEE 1988 International Conference On Robotics & Automation, Vol. 1, pp.
75 - 80.

[21] Bernard Faverjon, Pierre Fournassoud (1987). A Local Based Approach for
Path Planning of Manipulators With a High Number of Degrees of Freedom.
IEEE 1987 International Conference On Robotics & Automation, Vol. 2, pp.
1152 - 1159.

[22] S. L. Campbell, C. D. Meyer Jr. (1979). Generalized Inverses of Linear
Transformations. p. 251, Pitman; London, San Francisco, Melbourne.

[23] Patrick Henry Winston (1984). Artificial Intelligence. Addison-Wesley, pp. 87,
113 - 114.

91

[24] Elaine Rich (1983). Artificial Intelligence. McGraw-Hill Series in Artificial
Intelligence, pp. 80 - 84.

[25] J.T. Schwartz and M. Sharir (1983). On the 'Piano Movers’ Problem: II.
General Techniques for Computing Topological Properties of Real Algebraic
Manifolds. Advances in Applied Mathematics. Academic Press 4, pp. 298 -
351.

[26] L.W. Johnson, R.D. Riess (1981). Introduction to Linear Algebra. Virginia
Polytechnic Institute, Addison-Wesley, pp. 280 - 287.

(27} J.J. Craig (1986). Introduction to Robotics, Mechanics, and Control.
Addison-Wesley, Chapter 3.

(28] Josep Tornero, Greg Hamlin (1990). Spherical-Object Representation and Fast
Distance Computation for Robotic Applications. CIRSSE Report #64,
Rensselaer Polytechnic Institute, Troy, New York, September 1990.

(29] Donald Lefebvre, (1990).
/usr2/testbed/stable/uniz/demos/demol/pathplanner/ppLib.c Rensselaer
Polytechnic Institute, Troy, New York, 1993.

[30] Keith Nicewarner, (1992). The Geometric State Manager. CIRSSE Tech
Memo #21 (v. 1), Rensselaer Polytechnic Institute, Troy, New York,
September 1992.

[31] L. Carmichael, (1992). On the Use of the Inverse Kinematics for the 9-DOF
Manipulator. CIRSSE Tech Memo #18 (v. 1), Rensselaer Polytechnic
Institute, Troy, New York, June 1992.

APPENDIX A
Imakefile File Example

/¢ Imakefile for making PathPlanner, AppExec, and pp (UNIX version) e/

/¢ path planner includes ¢/
CPPFLAGS += -I/usr2/testbed/exp/unix/include
CPPFLAGS += -I/usr/old
CPPFLAGS += -L/usr/old

/+ path planner libraries ¢/
LDLIBS += -lcore
LDLIBS += -lsuntool
LDLIBS +» -lsunwindow
LDLIBS += -lpixrect
LDLIBS += -1pp
LDLIBS += -lmsg -1bts -lrec -lctos
LDLIBS += -1clifClient
LDLIBS #= -1katpt

LDLIBS += -lconfig

LDLIBS += -lkin
LDLIBS += -1trans
LDLIBS += -1tranParame
LDLIBS += ~1m

0BJS = alg.o env.o global.o graph.o graphics.o gpath.o lpath.o 1lst.o
model .o parser.o robot.o spec.o stack.o vector.o

AllTarget(libpp.a PathPlanner ppmain.o AppExec)

UBIXBinTarget(PathPlanner, PathPlanmer.o ppmain.o $(0BJS))
UBIXBinTarget(AppExec, AppBxec.o)

UBIXBinTarget(pp, main.o ppmain.o $(0BJS))
UBIXLidTarget(libpp.a, ppLib.o)

92

APPENDIX B

Simulation Input File

{ Command sequence : Build a tetrahedroa

}

Start

{ first strut)

move (1.79, -0.8, 1.0, 0.9, -0.8, 1.0, 0.0, 0.0, -1.0)
grasp (1.79, -0.8, 1.0, 0.9, 0.8, 1.0)

move (0, 0, O, 1, 0.0, 0.0, -1.0)

ungrasp (0, 0, 0, 1)

{ second strut }

move (1.79, -0.8, 0.9, 0.9, -0.8, 0.9, 0.0, 0.0, -1.0)
grasp (1.79, -0.8, 0.9, 0.9, -0.8, 0.9)

move (0, 0, 0, 2, 0.0, 0.0, -1.0)

ungrasp (0, 0, 0, 2)

{ third strut }

move (1.79, -0.8, 0.8, 0.9, -0.8, 0.8, 0.0, 0.0, -1.0)
grasp (1.79, -0.8, 0.8, 0.9, -0.8, 0.8)

move (0, 0, 0, 3, 0.0, 0.0, -1.0)

ungrasp (0, 0, 0, 3)

{ fourth strut }

move (1.79, -0.8, 0.7, 0.9, -0.8, 0.7, 0.0, 0.0, -1.0)
grasp (1.79, -0.8, 0.7, 0.9, -0.8, 0.7)

move (0, 0, 0, 4, 1.0, 0.0, 0.0)

ungrasp (0, 0, 0, 4)

{ fifth strut)}

move (1.79, -0.8, 0.6, 0.9, -0.8, 0.6, 0.0, 0.0, ~1.0)
grasp (1.79, -0.8, 0.6, 0.9, -0.8, 0.6)

move (0, 0, 0, 5, 0.0, 1.0, -1.0)

ungrasp (0, 0, 0,)

{ sixth strut }

move (1.79, -0.8, 0.5, 0.9, -0.8, 0.5, 0.0, 0.0, ~-1.0)
grasp (1.79, -0.8, 0.5, 0.9, -0.8, 0.5)

move (0, 0, 0, 6, 1.0, 0.0, -1.0)

ungrasp (0, 0, 0, 6)

quit
{ Enviromment info

X_graphics

Diagnostics

strutleagth (0.89)

structure_loc (0.8, -0.1, 1.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0)

strut (1.79, -0.8, 1.0, 0.9, -0.8, 1.0)
strut (1.79, -0.8, 0.9, 0.9, -0.8, 0.9)
strut (1.79, -0.8, 0.8, 0.9, -0.8, 0.8)
strut (1.79, -0.8, 0.7, 0.9, -0.8, 0.7)
strut (1.79, -0.8, 0.6, 0.9, -0.8, 0.6)
ssrut (1.79, -0.8, 0.5, 0.9, -0.8, 0.5)

tetra (2, 1, 0)

93

APPENDIX C
CTOS Application Canfiguration File

8¢ Example Config file for Planner and GSN’s Viewer
chassis mars 8 'mars’ is the machine name
sequencer mars

PREFIX Sequilost O

args recSvr REC_OPTIONS = -rv -geometry 500x800+0 -name Demo_1
args recSvr XCTOS_DISPLAY = mars:0.0
PREFIX mars O 8 put the following tasks on mars

chdir /home/tseng/CIRSSE/pathplan/graphicstest
task PathPlanner PathPlanner
task AppExec AppExec

CHDIR /usr2/testbed/stable/unix/bin/sund
task gsaServer gsmServer

systask viewer /usr2/testbed/stable/unix/bin/sund4/xctosParent

args viever XCTOS_PROG = /usr2/testbed/stable/unix/bin/sund/fxctosviever
args viewer XCTOS_DISPLAY = mars:0.0 8 display viewer on mars’ screen

94

APPENDIX D
Robot Definition Files

CIRSSE 9-DOF Robotic Testbed Definition (/home/tseng/CIRSSE/pathplan/ctos/robot.def
file):

/% robot parameters for CIRSSE 9 DOF PUNA arm plus platform (left arm) ¢/
/s ./

/+ This file contains all parameters of the robot used in the assembly

s¢ task. It’s 8included into robot.c.

ss robot.c is general in the sense that all information about a specific

#s robot is in robot.def.

s robot.c assumes a single chain robot with prismatic or revolute joints

s+ and a minimum of 6 DOF.

s ./

$ifndef ROBOT.CODE
/* degrees of freedom: o/
$define DOF 9

Selse

/% robot is mot symmetric due to gripper pneumatic cords »/
undef SYNNETRIC_ROBOT

/* joint types. First emtry is joimt closest to the base. PRISH or REV. ¢/
static int j_type[DOF) = (PRISN, REV, REV, RAEV, REV, REV, REV, REV, REV};

/* kinematic parameters on modified Demavit Hartenberg form.

*» Arrays for a, d, alpha and theta.

s Units: meters for a and d, degrees for alpha and theta.

se Indices: a[0] = a0 alpha(0) = alpha¢ d{0] = d1 theta[0] = thetal
¢¢ In a revolute joint theta is the variable in q, whereas in a prismatic
¢ joint d is the variable in the joint vector q. Enter a ’'Q’ if the

*s corresponding value is part of the q vector.

./

static float a(por] = (.32, .0, .0, .0, .0, .43182, -.02031, .0, .0};
static float d[DOF] = (Q, .544, .0, .828, .243, -.09391, .433, .0, .0};
static float alpha[DOF] = (-90., 90.,-90., 90.,-90., .0, 90.,-90., 90.};
static float thetafDOF) = (.0, Q ,Q ,Q .Q@ .,Q .9 .Q ,Q };

/% end effector matrix.
¢+ This homogeneous matrix describes the tramsformation from the last limk
¢ to the gripper. In this case this is a simple tramslationa along the

*s z-axis.

s IRPORTANT! The vectors in the 3x3 matrix in the constant definition delow
Ll B are COLUNE vectors, evem though they look like row vectors!

./

static H_Matrix trE = {{{1.0, 0.0, 0.0},
{0.0, 1.0, 0.0},
{0.0, 0.0, 1.0}}, {0.0, 0.0, 0.24}};

/® Joint value ranges for left arm. First entries are closer to the base.

95

s+ Units are meters for prismatic and degrees for revolute joints.

./

static float ql_min(DOF] =

{-1.3216,~150. ,-46.,-261.,-215.,-65.,~121.,-95.,-284.)};
static float ql_max[DOF] =

{ 0.6096, 150., 46.,
/+ Joint ranges for right arm ¢/
static float qr_min{DOF] =

{-0.6096,-150.,-45. -248.,-215.,~65.,-129.,-95.,-284.};
static float qr_max(DOF] =
78., 37.,238., 148., 95., 284.);

{ 1.3716, 150., 45.,

T74., 34., 241., 144., 96., 284.);

/* Joint weights used for solving the Jacobianm equation. The values of this
s+ vector define a diagonal matrix Q with the elements of ’joimt_weight’ on
s¢ the diagonal. The (in general redundant) Jacobian equation is solved such
*+ that q’Qq is minimized. (q’ is the transpose of q).

s/

static joint_weight(DOF] = {16.0, 16.0, 32.0, 4.0, 6.0, 4.0, 2.0, 1.0, 1.0)};

/* constants for definition of picture and model ¢/

$define
8define

8define
Sdefine
8define
8define

Sdefine
$define
Sdefine
8define

$define
Sdefine

$define
$define
8define
8define
$define
8define
8define

8define
$define
8define
$define
$define
8define
Sdefine
8define
$defire
sdefine

Sdefine
$define
Sdefine
8define
8define

Sdefine
8define
$define

RXO
RYO

RX1a
RX1d
RYY
RZ1

RR3

RR3b
RY3a
RY3b

R4
RY4

RX5a
RX5d
RXSc
RY5a
RYSDL
RZSa
RZ5b

RXGa
RX6bd
RX6¢c
RX6d
RIGm
RR6

RYGa
RYSD
RZ68a
RZ6bd

RR7

RX7a
RX7b
RZ7a
RZ7b

RZ9a
R29b
RR9

Q.
.8

1

0.
0.
=0.
-0.

0
0
-0
o
[}

54

0.17
-0.386
-0.

0o

2

.02

.02

.07

.06 /% was .07 =/
. 423

.06091

.04

.04
.08
.08
.11
.23

108

.03

96

97

/+ 'Link_Rodel' assumes a cylindrical liak model. The first 6 parameters

ss are the cylinder’s endpoints, the 7th is the cylinder’s radius and the

s+ last one is the link number.

o/

static void Get_Link_Models ()

{
Sew_Link_Model (RX0/2.0, -RYO, 0.0, RX0/2.0, RYO, 0.0, RX0/2.0, 0);
Tevw_Link_Nodel (RX1a, RY1, 0.0, RX1b, RY1, 0.0, RZL, 1);
New_Link_NRodel (0.0, RY3a, 0.0, 0.0, AY3b, 0.0, RR3, 3);
New_Link_NModel (RXSa, 0.0, 0.0, RXSc, 0.0, 0.0, RYSa, §);
Teu_Link_Model (RX6m, RYSa, 0.0, RXém, RYSD, 0.0, ARG, 6);
New_Link_Nodel (RX7a, 0.0, RZ7a, RX7D, 0.0, RITa, RA7, 7);
New_Link_Nodel (0.0, 0.0, RZ9a, 0.0, 0.0, RZ9b, RR9, 9);

/¢ The definition of the robot’s picture on the screen. The picture is
¢+ g wire frame - every line of this frame is defined here. The six
es first parameters of the ’'Link_Line’ procedure are the two endpoints
s¢ of the line in the local frame. Unit: meters.
e The last parameter is the link number. Note: outdated SUF graphics.
./
static void Get_Link_Pictures ()
{

Bew_Link_Line (0.0, -2Y0, 0.0, 0.0, RYO, 0.0, 0);

Bew_Liak_Line (RXO0, -RAYO, 0.0, RX0, RYO, 0.0, 0);

Sew_Link_Line (RXia, RY1, RZ1, RXib, RY1, RZ1, 1);
New_Link_Line (RX1a, RY1, -RZ1, RX1b, RY1, -R21, 1);
New_Link_Line (RXia, RYt, RZ1, RXia, RY1, -RZ1, 1);
New_Link_Line (RXib, RY:, RZ1, RX1ib, AY1, -RZ1, 1);

Sew_Link_Line (~RR3b, RY3a, -RR3b, RA3D, RY3a, -RR3b, 3);
Bew_Link_Line (-RR3b, RY3a, RR3b, 1RR3b, RY3a, RR3Db, 3);
Bew_Link_Line (~RR3d, RY3a, -RR3b, -RR3bD, RY3a, RR3D, 3);
Bew_Link_Line (RR3b, RY3a, -RR3b, RR3bd, RY3a, RR3b, 3);

New_Link_Line (-RR3, RY3a, -RR3, RR3, RY3a, -RR3, 3);
Bew_Link_Line (-RR3, RY3a, RR3, RR3, RY3a, RR3, 3);
Bew_Link_Line (-RR3, RY3a, -AR3, -RR3, RY3a, RR3, 3);
New_Link_Line (RR3, RY3a, -AR3, RR3, RY3a, RR3, 3);

Bew_Link_Line (-RR3, RY3b, -RR3, RR3, RY3b, -RR3, 3);
New_Link_Line (~RR3, RY3b, RR3, RR3, RY3b, .RR3, 3);
Bew_Link_Line (-RR3, RY3b, -1R3, -RR3, RY3D, 1RR3, 3);
New_Link_Line (RR3, RY3b, -1R3, RR3, RY3b, 1RR3, 3);

Bew_Link_Line (-RR3, RY3a, -RR3, -RR3, RY3b, -RR3, 3);
New_Liak_Line (-RR3, RY3a, RR3, -RR3, RY3b, RR3, 3);
New_Link_Line (RR3, RY3a, -RR3, RR3, RY3b, -RR3, 3);
New_Limk_Line (RR3, RY3a, RR3, RR3, RY3b, 1RR3, 3);

Nee_Link_Line (-RR4, -RR4, -RR4, RR4, -RR4, -RR4, 4);
New_Link_Line (-RR4, -RR4, RR4, RR4, -RR4, 1RR4, 4);
New_Link_Line (-RR4, ~RR4, -RR4, ~RR4, -RR4, RR4, 4);
Bew_Link_Line (RR4, -RR4, -RR4, RR4, -RR4, RR4, 4);

Bew_Link_Line (-RR4, RY4, -RR4, RR4, RY4, -RR4, 4);
New_Link_Line (-RR4, RY4, RR4, RR4, RY4, RN, 4);
New_Link_Line (-RR4, RY4, -RR4, -RR4, RY4, RM4, 4);
Bew_Link_Line (RR4, RY4, -RR4, RR4, RY4, RM4, 4);

Bew_Link_Line (-RR4, -RR4, -RR4, -RR4, RY4, -RR4, 4);
New_Link Line (-RR4, -RR4, RR4, -RR4, RY4, 1RR4, 4);

New_Link_Line (RR4, -RR4, -RR4, RR4, RY4, -RR4, 4);
Bew_Link_Line (RR4, -RR4, RR4, RR4, RY4, RR4, 4);

New_Link_Line (RX5a, -RY5a, RZSa, RX6a, RY5a, RZ5a, 6);
Bew_Link_Line (RX5a, -RY5a, RZ5b, LX6a, RYSa, RZ5bD, §);
Bew_Link_Line (RX5a, -RYS5a, RZ6a, MLXBa, -RY5a, RZ6D, §);
Bew_Link_Line (RX5a, RY5a, RZ5a, RXSa, RYSa, R26D, 6);

Bew_Link_Line (RX5a, -RYSa, RZ6a, RX5b, -RYBa, R25a, §5);
New_Link_Line (RX6a, AY5a, RZ5a, RXSD, RY6a, RZ6a, 6);
Bew_Link_Line (RX5a, =-RY6a, RZ6b, RX5b, -RYSa, RZSD, 5);
Bew_Link_Line (RX5a, RY5a, RZ5b, RXSbL, RY6a, RZBEb, 5);

NBew_Link_Line (RXSb, ~RY5a, RZ5a, RX5c, -RYSb, RZI5a, 5);
Sew_Link_Line (RXS5d, RYSa, RZ6a, RXSc, RYSb, RZ6a, 5);
Bew_Link_Line (RISb, -RY5a, RZ5b, RX6c, -RY5b, RZISb, §);
New_Link_Line (RXSb, RYSa, RZSb, RXSc, RYSb, RZI5b, 5);

Bee_Link_Line (RXSc, ~RY6b, RZBa, RX5c, RYBEbL, RZ5a, 5);
Bew_Link_Line (RXSc, -RYSb, RZ5b, RXSc, RY5b, RZ5b, 5);
Sew_Link_Line (RXSc, -RYSb, R25a, RXBc, ~RYSb, RZ6b, 5);
Sew_Link_Line (RXSc, RYSbL, RZSa, RXSc, AY5b, RI5b, 5);

Bew_Link_Line (RX6a, RY6a, RZ6a, RX6b, RYGa, RZ8a, 68);
New_Link_Line (RX8a, RY6a, RZ6b, RXSL, RYSa, RZI6b, 6);
Sew_Link_Line (RX6a, RY6a, RZ68a, RX6a, RYSa, RZ6b, 6);
Bew_Link_Line (RX6d, RY6a, RZGa, RX6bL, RYSa, RZ6D, 6);

New_Link_Line (RXGa, RY6a, RZ6a, RX6c, RYSD, RZ6a, 6);
Bew_Link_Line (RX8b, RY6a, RZ6a, RX6d, RYSD, RZ8a, 6);
New_Link_Line (RXGa, RYGa, RZ6b, RX6c, RYSD, RZ6b, 6);
Bew_Link_Line (RX6b, RY8a, RZEb, RXGd, RYSD, RZ6D, 6);

Bew_Link_Line (RX6c, RYSD, RZ6a, RX6d, RYSD, RZGa, 6);
Bev_Link_Line (RX8c, RYSD, RZ6b, RX6d, RYSD, RZ6b, 6);
New_Link_Line (RX8c, RYSD, RZ8a, RX6c, RYShL, RZ26b, 6);
New_Link_Line (RX68d, RYSD, RZ6a, RX8d, RYSD, RZ6b, 6);

Bew_Link_Line (-RR7, -RR7, RZ7a, RR7, -RR7, RZ7a, 7);
New_Link_Line (-RR7, RR7, RZ7a, RR7, RR7, RZ7a, 7);
Bew_Link_Line (-RR7, -RA7, RZ7a, -RR7, RR7, RI7a, 7);
Wew_Link_Line (RR7, ~AR7, RZ7a, RR7, RR7, RI7a, 7);

New_Link_Line (-RR7, -RAR7, RZ7a, -RR7, -RR7, RZ7bL, 7);
Bew_Link_Line (RR7, -RR7, RZ7a, RR7, -RR7, RZI7b, 7);
New_Link_Line (~RR7, RR7, RZ7a, -RR7, 1RR7, RZ7Db, 7);
New_Link_Line (RR7, RR7, RZ7a, RR7, RR7, RZI7b, 7);

Bew_Link_Line (-RR7, -AR7, RZ7b, RR7, -RR7, RI7b, 7);
New_Link_Line (-RR7, RR7, RZ7b, RR7, RR7, RI7b, 7);

Bew_Link_Line (RX7a, 0.0, RZ7a-0.04, RX7a, 0.0, RZ70+0.04, 7);
Bew_Link_Line (RX7d, 0.0, RZ7a-0.04, RX7b, 0.0, RZ7a+0.04, 7);

/* The following information deals with collision avoidance between links.
se It’s a table with dimension (DOF+1)«(DOF+1). Insert a TRUE if a
s collision between the column and the row link is possidble; then the
ss program will do collision avoidance on this particular link-link pair.
*s This table is clearly symmetric - so the program vill only consider the
*s upper right side of the diagonal (diagonal elements are of course FALSE).
s/
BOOLEAN 1_1_check([DOF+1)[DOF+1] =

{{FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, FALSE, TRUE },

99

{FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, FALSE, TAUE),
{FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE},
{FALSE, FALSE, FALSE, PALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE)},
{FALSE, FALSE, FALSE, FALSE, FALSE, FALSEK, FALSE, FALSK, FALSE, FALSE},
{FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE },
{FALSE, FALSE, FALSE, FALSE, F!LS!. FALSE, FALSE, TRUK, FALSE, FALSE },
{FALSK, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE)},
{FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE},
{FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSK, FALSE, FALSE, FALSE}};
/s © 1 2 3 4 13 [7 8 9 ./

Sendif

100

NASA Langley 8-DOF Robot Definition (/home/tseng/Langley/pathplan/ctos/robot.def
file):

/% robot parameters for Langley’s 6 DOF arm plus 2 DOF platform s/
/e s/

/% This file contains all parameters of the robot used in the assembly

s task. It's $included into robot.c.

ss robot.c is general in the sense that all informationm about & specific
*s robot is in robot.def.

s robot.c assumes a siagle chain rodbot with prismatic or revelute joints
*s and s minimum of 6 DOF.

. ./

sifndef ROBOT_CODE /¢ this stuff included ia libraray, .h files o/

/% degrees of freedom: ¢/
$define DOF 8

/s 8define DOF 6/
$define LANGLEY

Selse /¢ this stuff only for robot.c ¢/

/* single arm system, as opposed to dual arms, used for gsm slot update size »/
$define SINGLE_ARN

/+ robot is not symmetric due to gripper pneumatic cords ¢/
$define SYRMETRIC_ROBOT

/* joimt types. First entry is joint closest to the base. PRISN or REV. ¢/
static int j_type[DOF]) = {PRISN, PRISR, REV, REV, REV, REV, REV, REY);

/% Arrays for a, d, alpha and theta.

s¢ Kinematic parameters in modified Demavit Hartenberg form. (ie, DH except
*» that the order is: rot(x), trans(x), trans(z), rot(z), to go from frame i-1
ss to frame i. (start at frame 0). Thus, frame i is moved by joinmt i,

¢+ and 1ink i is comnected to link i. (ie. much nicer than DH)).

*s Units: wmeters for a and d, degrees for alpha and theta.

s+ Indices: a[0] = a0 alpha({0] = alpha0 d(0] = d1 theta(0] = thetal

s+ In a revolute joint theta is the variable imn q, whereas in a prismatic

*+ joint d is the variable in the joint vector q. Enter a ’Q’ if the

es corresponding value is part of the q vector.

s/

static float alpha{DOF]) = {-90., -90., 90., -90., 0.0, =-90., 90., -90.};
static float alpor) = { 0.0, 0.0, 0.0, 0.0, .439%4, 0.0, 0.0, 0.0};
static float d{oor]) = { q, q, .6833, 0.0, -0.3048, 1.0338, 0.0, 0.0};
static float theta{DOF]} = (-90.,90., Q@ , Q, Q . Q@ , Q, Q)

/¢ end effector matrix.

¢ This homogeneous matrix describes the transformation from the last link

s to the gripper. In this case this is a simple translation along the

ss z-axis.

»s INPORTANT! The vectors inm the 3x3 matrix in the constant definition below

®8 “°°777°°°% are COLUNE vectors, even though they look like row vectors!

./

static H_NMatrix trE = {{{0.0
{-1.0, 0.0

{0.0

, 1.0, 0.0},
» 0.0},
0.0, 1.0}}, {0.0, 0.0, 0.400}};

»

/* Joint value ranges for left arm. First entries are closer to the base.

*s Units are meters for prismatic and degrees for revolute joints.
*/

static float ql_min[DOF) =

{-3.0734, -5.373, -150., -240., -240., -720., -90., -720. };
static float ql_max[DOF) =

{ 2.8448, 0.0, 150., 60., 60., 720., 90., 720. };

/* Joint ranges for right arm ¢/
/* currently non-existeat, bogus numbers ¢/
static float qr_mia{DOF] =

{333. ,333., -45.,-250.,~-226.,-46.,~-110.,-100.};
static float qr_max(DOF] =

{222. ,222., 45., 70., 46.,225., 170., 100.);

/* Joint weights used for solving the Jacobiam equation. The values of this
*% vactor define a diagomal matrix with the elements of ’joint_weight’ on
*s the diagonal. The (in gemeral reduadaat) Jacobian equation is solved such
¢+ that q’Qq is minimized. (q’ is the transpose of q).

./

static joint_weight[DOF] = {120.0,48.0, 6.0, 6.0, 2.0, 1.0, 2.0, 1.0};

/* constants for defimition of picture and modsl

./

$define 1R2 0.7
Sdefine RX2 2.7
$define RX2b -2.88
$define RY2 996
Sdefine RR3 0.20 /¢ extra lesway o/
$define 23 0.0
8define RZ3Db ~0.60 /+ fudge don’t want collision with ‘cart’ plane ®/
Sdefine RR4 0.19
$define RX4 ~0.21
Sdefine RX4b 0.249
Sdefine RZ4 -0.089
Sdefine RRS 0.10
sdefine RYS -0.12
Sdefine AYSD 1.033
Sdefine AR7 0.05
$define RY7 0.0
Sdefine RY?D 0.20
Sdefine RRS 0.05
8define RYS 0.93
8define RYSH -0.93
8define RI8 0.23
Sdefine RIS® 0.38

/¢ 'Sew_Link_Nodel®' asswmes a cylindrical limk model. The first 6 parameters
*s are the cylinder’s emdpoiats, the 7th is the cylinder’s radius and the

*s last one is the liak aumber.

*» 'Bew_Link_Trianm_Nodel’ assumes a triangular plane segment model. 9 endpts,
s+ the radius, and the link number are the parameters.

./

static void Get_Link_HNodels ()

{

(void)New_Link_Nodel (RX2, RY2, 0.0, RX2b, RY2, 0.0, 1RR2, 2);

101

New_Link_Model (RX4, 0.0, RZ4, RX4b, 0.0, RR4, 4);
New_Link_KRodel (0.0, RYE, 0.0, 0.0, RYSb, 0.0 RRS, 6);
Few_Link_Model (0.0, RY7, 0.0, 0.0, RY7H, 0.0, RRS, 7);
(void)Bew_Link_Trian_Model (0.0,RY8,R28, 0.0,RY8b,RZ8, 0.0,0.0,RZ8b, RRS, 8);

New_Link_Nodel (0.0, 0.0, RZ3, 0.0, 0.0, RZ3b, RR3, 3);
Ri4,

/¢ The definition of the robot’s picturs on the screen. The picture is
*s 3 vire frame - every lime of this frame is defined here. The six

s first parameters of the 'Link_Line’ procedure are the twvo endpoints
s of the line in the local frame. Unit: meters.

s The last parameter is the link number.

./

static void Get_Link_Pictures ()

{

/e

Bo SUBcore picture defined.

./

}

/% The following information deals with collision avoidance between links.
es It’s a table with dimension (DOF+1)e(DOF+1). Insert a TRUE if a

¢ collision between the column and the row link is possible; then the

es program will do collision avoidance on this particular link-link pair.

¢ This table is clearly symmetric - so the program will only consider the
es upper right side of the diagonal (diagonal elements are of course FALSE).
./

BOOLEAN 1_1_check[DOF+1])[DOF+1]) =
{{FALSE, FALSE, FALSK, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE },

{FALSE, FALSE, FALSK, FALSE, FALSE, TRUE, FALSE, FALSE, TRUE },
{FPALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSK, FALSK, TRUE)},
{FALSE, FALSE, FALSK, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE },
{FALSE, FALSE, FALSK, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE },
{FALSE, PALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE },
{FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE },
{FALSE, FALSE, FALSE, FALSE, FALSK, FALSE, FALSE. FALSE, FALSE },
{FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE }};
/e 0 1 2 3 4 s] 7 8 s/

Sendif

102

APPENDIX E
Planar Model

Our triangular planar model is defined by three vectors and a radius. It models
the volume of space swept by a sphere of radius r over the entire area of a triangle
defined by the three points a, b, and c, see Figure E.1. It can also be defined

mathematically as the set of points S where S is defined as follows.
S(a,b,er)={p|p=a+tix+ty+R, Vi, t;€[0.1],V|R| - r}
where
x=b-a

and

y=c—a

Adding this planar model, henceforth called a “triangle”, to the planner’s line
segment, called “segment”, requires us to make distance calculations for two more
cases: distance from segment to triangle and distance from triangle to triangle.
Munger has already calculated the distance from line to line, so we will use his work

without repeating the derivation (see Munger [1] p. 7-13).

E.1 Distance from Segment to Triangle

We shall develop this calculation in the form of an algorithm outline. Words

starting with capital letters are keywords (functions, variables).

Segmen’ fo Triangle Distance Algorithm:

1. Pr ect the End Points of the Segment onto the plane of the Triangle; calculate

the Distances from the end points to the plane, and calculate the Half-Planes

103

104

X

Figure E.1: Triangular Planar Model

which each end point is in.

2. if both end points are in the same Half-Plane then goto Step #3 else Find the

Intersection of the Segment with the plane defined by the Triangle.

(a) if the Intersection is In-The-Triangle then Report a collision.

(b) else calculate the distance from the Segment to each of the three segments
constructible from the Triangle’s three verticies and Report the shortest

distance, closest points, and vector.

3. if the both end points’ projections are In-The-Triangle, then the closer of the
two endpoints and its projection are the closest points on the Segment and the

Triangle. Report these points, their distance, and the vector between them.

4. else calculate the distance from the Segment to each of the three segments con-
structible from the Triangle’s three verticies and Report the shortest distance,

closest points, and vector.

105

—end of algorithm—

There are three key procedures which are worth discussion, details can be
found in module vector.c. The first procedure is the Projection of the endpoints
onto the plane of the Triangle. This is done by finding the normal to the plane

(again let a, b, and ¢ be the points of the triangle):
normal = (a—-b) x (a—c)

Then the matrix

T=(a—b|a-c|normal)™

is the transform from the world frame to the coordinate frame of the triangle plane

ab and ac, and the normal to the plane. Hence the product
Td

where

d=a-p

and p is an endpoint of the segment, transforms the point p into the plane’s coor-
dinate system. From there the world coordinates can easily be recovered.

The second important procedure, In-The-Plane, determines if a co-planar point
p is inside the triangle abc. See Figure E.2, if ap is in the shaded region then its
cross products with ab and ac will have the same sign, ie. their dot product will be
positive. If ap is in the interior of the vectors ab and ac then the cross products
ab x ap and ab x ac will have the same sign (dot product). Thus we have a test
for one vector ap’s inclusion between two other vectors ab and ac. Finally, if p is
between two pairs of vectors of a triangle (ab and ac and bc and ba), then it is
interior to the triangle.

The last procedure, calculating the distance from a segment to another segment

has been described by Munger in his paper [1].

106

tnterior {Q

Figure E.2: In-The-Triangle()

E.2 Distance from Triangle to Triangle

This calculation draws heavily from the procedures already described. The
following algorithm calls the Segment to Triangle Distance Algorithm five times,
therefore this algorithm is at best five times slower than the previous algorithm,
which in turn is slower than the segment to segment distance calculation. In sum,

adding the triangle model has slowed down distance calculations considerably.

Triangle to Triangle Distance Algorithm:

1. Let the planes, pl and p2, be defined as points (a,b,c) and (d,e,f), with radii,
rl and r2.

2. Find the closest segment-plane pair among the following pairs: ab-p2, ac-
p2, be-p2, de-pl, and df-pl, by calling the Segment to Triangle Distance
Algorithm five times. Name the closest points pointl and point2, and name

the distance dl.

107

3. Return the closest points pointl and point2. Return the closest distance

dl —rl —r2,

—end of algorithm—

APPENDIX F
Header File Listings

Module alg (linear algebra):

Data types

typedef struct var
{

double ®e;

int r, ¢c;

int size;
} var;

A variable (matrix, vector, or scalar). ’'r’ rows, ’'c’ columns, and ’'size’
number of elements (rec). ‘e’ is a pointer to a linear array of ’size’
doubles. The order is left to right, then top to bottom.

Procedure description

void Init_Vars ()

This procedure initializes the "ALG" module and must be called befors doing
anything else.

void Exit_Vars ()

Can be called in order to free all memory space used by the module. No function
should be called after *Exit_Vars’.

VAR slew_Var ()

Assigns a pointer to am initialized matrix to & pointer variable. Every pointer
variable must be initialized this way before using it.
After initialization the variable is empty (a Ox0 matrix).

BOOLEAN Put (a, b)
YAR *a;
VAR b;

Puts the value of ’a’ which can be a variable or an expression, into ’b’.
This function must be used for every assignment operation!

VAR o¥0 (r, ¢)
int r;
int c;

Returns an re¢c matrix with all elements equal to zero. Typed: “"vee-oh".

VAR *VOnes (r, ¢)
int r;
int ¢;

108

109

Returns an r*c matrix with all elements equal to one.

VAR o¥VI (dim)
int dim;

Returns a dimedim unit smatrix.

VAR eVuser (r, ¢, v1, v2, v3, ...)
int r;
int c;
‘rec’ doubles;

Returas an rec matrix with user defined contents. The doubles in the parameter
list are filled in the matrix from left to right and from top to bottom.
The user must supply rec doubles in the parameter list.

Example:
Yuser (2, 3, 1.0, 2.0, 3.0,
§.0, 4.0, 3.0); creates

~ory
o -
L)
ww
et i

VAR eVgcmult (v, s)
VAR sv;
double s;

Returns ’'v’ multiplied elementwise with 's’.
Example:
(1 2 3] wultipliedwith2.0is [2 4 6].

doudle Vector_Norm (v)
VAR sv;

Returns the "two"” norm (length) of variable v. 'v’ must be a vector, i. .
'v’ must have either ome row or one columm.

VAR sVadd (a, b)
VAR *a;
VAR sb;

Returns the elementvise addition of variables ’a’ and ’b’. 'a’ and ’'b’ must
have the same dimensions.

VAR eVsub (a, b)
VAR sa;
VAR od;

Returns the slementvise subtraction of variables ’a’ amd ’b’. ’a’ and ’'b’ must
have the same dimensions.

VAR ¢¥mult (a, b)
VAR ea;
VAR ob;

Returns the product of variables ’a’ and 'b’. The number of rows of ’'a’ must
equal the number of columms of ’b’.

double VYdot (a, b)
VAR =a;
VAR ob;

Returns the dot product of column variables ’a’ and ’b’.
(Compatibility required)

YAR eVtranspose (v)
VAR eov;

Returns the transpose of variabdle v.

VAR sVsolve (a, b, q, success)
VAR #a;
VAR b;
VAR »q;
BOOLEAN esuccess;

Returns the solution of the linear system asxsb. ’a’ and ’'b’ wust have the
same number of rows. If ’a’ is square, 'Vsolve’ returnms the solutioa, if

one exists (if ’a’ is noasingular) or the solution to the underdstermined
reduced set of equatiomns (if ’'a’ is simgular). If ’a’ has more rows than
columns (system is overdetermined), thea 'Vsolve’ returas the least square
approximation. If 'a’ has less rovs tham colusms (systes is underdetermined),
then the x minimizing x’Qx (’ denotes the transpose) is returned. Q is the
INVERSE of a diagonal matrix with the elements of vector 'q’ on the diagonal,
thus 'q’ and ’x’ have the same dimension. If ’q’ is NULL, then Q=I

(unity matrix) is assumed and thus the minimum norm solution is returned.

If a solution was found, ’success’ is set to TRUE, othervise to FALSE.

VAR o¥inv (a)
VAR ¢a;
Returns the inverse of variable ’a’. ’a’ must be squared.

int Bb_Cols (v)
VAR eov;

Returas the number of columns of variable 'v’.

int Fb_Rows (v)
VAR ov;

Returns the number of rows of variable 'v’.

BOOLEAN Fill_Var (v, r, ¢, aum, vi, v2, v3, ...)
VAR sv; .
int r;
int c;
iat num;
'num’ doubles;

This procedure is used to fill part of matrix ’v’ with user defined values.
It starts filling at the element at ros 'r’ and column ’c’ and fills up
from left to right amd from top to bottom. It writes ’num’ values into

the matrix. It is the user’s responsidility to supply ’num’ doudles after
the 'num’ parameter. If the matrix would overflow over the bottom right
corner, an error occurs and no values are written at all.

double Read_El (v, r, c)
VAR ov;
int r;
iat c;

Returns the slement at row 'r' and columa ’¢’ in variable 'v’'. Elements
start at r = O and ¢ = O.

110

111

BOOLEAN Write_El (v, r, c, val)
VAR eov;
int r;
int c;
double val;

Writes 'val’ to the element at row ’r’ and column ’c’ in variable 'v’. The
first element is (r,c) = (0,0).

VAR #Vcut (src, r_src, c._src, r_size, c_size)
VAR »*src;
int r_src;
int c_src;
int r_size;
int c_size;

Returns a piece of variable ’src’. The top left corner of this piece is the
element at row ’'r_src’ and column ’c_src’ in variable ’'src’. The piece

has ’r_size’ rows and ’c_size’ colummns. An error occurs, if the specified
piece is not part of matrix ’src’. If r_size or s_size are zeroc then

the rest of the elements in the rov or columm, respectively, are taken.

BOOLEAN Paste (src, dest, r_dest, c_dest)
VAR esrxc;
VAR sdest;
iat r_dest;
int c_dest;

Pastes variable ’src’ into variable ’'dest’. ’src’s top left corner goes
to row 'r_dest’ and column ’c_dest’ in variable ’dest’. An error occurs
if there is not enough room in ’dest’ to complete the operation.

BOOLEAN Swap_Rows (v, ri, r2)
VAR sv;
int r1;
int r2;

Rows ’r1 and 'r2’ im variable ’v’ are exchanged.

BOOLEAN Swap_Cols (v, c1, c2)
VAR eov;
int ci;
int ¢2;

Columas ’ci and ’c2’ in variable ’v’ are exchanged.

BOOLEAN Print_Var (v)
YAR eov;

Variable ’'v’ is priated to the screen. 'Print_Var' doesa’t care about the
screen size, so large matrices may be hard to read.

void Kill_Var (v)
VAR eov;

The memory space of variable ’v’ is freed. Pointer 'v’ is invalid after
'Kill_Var’.

Module env (environment):

Procedure description

void Init_Env (source)
LIST esource;

Reads the locations of all struts that are preseat in the environment at
initialization time and the length of the struts in use. Both input file and
CIRSSE interface ars read. Then tetrahedra are extracted and intarmediate
steps are generated.

double Get_Strut_Leagth ()

Returns the strut lemgth.

BOOLEAF Symmetric ()

Returns TRUE if the struts are symmetric in the sense that the endpoints can
be exchanged for assembly. If this is not the case, FALSE is returned.

BOOLEAN Get_Tetra_Pos (xt, yt, 3t, nb, pl, p2)
int xt;
int yt;
int zt;
int nbd;
Vector epi;
Vector *p2;

Transforms a strut position given in tetrahedron coordinates to cartesian
coordinates of its endpoints pi and p2. (xt, yt, st) denote a tetrahedron

in the structure and ’'nb’ denotes the number of the strut in this tetrahedron
(1..6).

NODEL #Get_First_Strut_Nodel (1p)
LIST_EL #slp;

NODEL ¢Get_Next_Strut_Nodel (1p)
LIST_EL eelp;

HODEL sGet_First_Thing_Nodel (lp)
LIST_EL eelp;

HODEL sdet_Sext_Thing Nodel (1p)
LIST_EL selp;

NODEL ¢Get_First_Inter_Step_Nodel (1p)
LIST_EL e»lp;

NODEL ¢Get_Next_Inter_Step_Nodel (1p)
LIST_EL eslp;

These procedures are used to read the list of strut models, thing models
(struts and planes) and intermediate step models and are equivalent to
the standard list readout procedures described in the list module.

BOOLEAB Add_Strut (p1, p2, strutld)

112

113

Vector pi;
Vector p2;
int strutld;

Adds a strut to the enviroament. Its endpoints are at ’'p1’ and ’p2’. Its id
is ’strutld’ (for gsm). Intermediate steps are deleted, tetrahedra reextracted
and intermediate steps recomputed.

BOOLEAF Remove_Strut (pi, p2, rad, strutld)
Vector *pi;
Yector *p2;
double erad;
int estrutld;

Removes the strut closest to an imagimary strut with endpoints at ’'+pl’ and
'sp2’. The closest strut is the strut whose ceater is closest to the center
of the imaginary strut between ’'+pi’ and ’sp2’. This strut’s endpoints,
radius, and GSH idemtity aumber is returmed ia 'epl’, ’'ep2', ’rad’ and
'strutld’, respectively. It is VERY INPORTANT that Remove_Strut is called
before drasp_Part so that Grasp_Part will inform gem correctly.

FALSE is returned if there is no strut in the environment.

Intermediate steps are deleted, tetrahedrs reextracted and intermediate steps
recomputed.

RODEL ¢Cet_Closest_Strut_Nodel (p1, p2, dmin)
Vector pl;
Vector p2;
double *dmin;

Returns the model of the strut from strutlist closest to the position
defined by ’di’ and ’d2’. The distance is returned in ’dmin’. If there
is no strut in the strutlist, 'dmin’ takes a negative value, othervise
'dmin’ is the distance between the centers of the struts.

Module global :

Procedure description

void Varning (procname, msg)
char sprocnamse;
char smsg;

Prints the calling procedure’s name (’procname’) and a warning message (’msg’)
and returas.

void Error (procaame, msg)
char eprocname;
char emsg;

Prints the calling procedure’s name (’procname’) and an error message (’msg’)
and returns.

void Fatal (procname, msg)
char sprocname;
char smsg;

Prints the calling procedure’s name (’procname’) and an error message (’msg’)
and exits the program with exit code 1.

void Fatal_Nallec (procaame)
char sprocname;

Prints the calling procedure’s name (’procname’) and the standard errer
message "“memory allocation failed” and exits the prograa.

This procedure is provided for comvenience since every memory allocation
must be checked for failure.

It also returns with exit code 1.

double Atan2 (x, y)
double x, y;

Like the built in math fuaction atan2, but Atam2 (0.0, 0.0) = 0.0

114

115

Module gpath (giobal path planner algorithm):

Procedure descriptioa

void Init_Path ()

Hust be called once before calling 'Fiad_Path’ for initialization.

LIST oFind_Path (path, pi, p2, dir, deprt, appr, attempt_aumm)
LIST epathi;
Vector p1;
Yector p2;
Vector dir;
int attempt_num;

Plans a path lsading from the current joint vector found in the robot module
to a position defined using the endpoints of the goal strut ’'pi and 'p2’

and the direction from shich the goal is to be approached ’dir’.

The path is returned in list ’path’. The elements are joint vectors (type VAR).
If attempt_num is not 1 then planning starts at last global graph state

with the black lists and isteplist and “rotatiom insertion number” saved

from the previous call to Find_Path.

Module graph (graph theory):

Data types

typedef struct graph

LIST enodelist; /* the nodes (vertices) of the graph s/

double (esWeight) (); /% function returning an edge’s weight o/

BOOLEKAN directed; /* TRUE if graph is directed ./
} araPH;

Procedure description

GRAPH eNevw_draph (Weight, directed)
double (eWeight) ();
BOOLEAN directed;

Creates a nevw graph data structure. The user must provide the function ’Weight’
which returns the weight of an edge to the graph module. It is declared as
follovs:

double Weight (nodel, node2, edge)

char *nodel, node2, edge;

If the graph is directed, the module expects the weight of the edge going from
’nodel’ to ’'nodel’. If parameter ’'directed’ is TRUE, then a directed graph is
created.

void Connect (graph, nodei, node2, edge)
GRAPH sgraph;
char snodel;
char enode2;
char eedge;

'nodel’ and ’node2’ are connected by 'edge’. Any graph structure can be build
by just using this ome procedure. If one of the nodes has been used in a
previous call of 'Commect’, then the new edge is added to it, othervise a

new node is created awtomatically. In a directed graph an edge pointing from
‘nodel’ to 'node2’ is created. .

void Connect_All (graph, modelist, Get_Edge)
GRAPH sgraph;
LIST senodelist;
char *(eGet_Rdge) ();

This procedure is useful for creating graphs in which every node is comnected
to every other node. ’nodelist’ contains the nodes of the graph and ’'Get_Edge’
is a user provided procedure that is declared as follows:

char *Get_Edge (nodel, node2)

char *nodel, *node2;

This function must return the data associated to the edge between ’nodel’ and
'node2’. This can be a NULL pointer which means that this edge doesn’t have
an equivalent data structure in the user’s module. In fact, the 'Get_Edge®
parameter can be a NULL pointer, too. This is the case when the edges in the
graph module generally don’t have an equivalent data structure in the user’s
module. In a directed graph every pair of nodes will receive tvo edges
pointing in opposite directions.

116

void Connect_All_Comd (graph, nodelist, Get_Edge, Condition)
GRAPH egraph;
LIST snodelist;
char *(sGet_Edge) ();
BOOLEAN (sCondition) ();

This procedure works like 'Connect_Cond’, the only difference is the
additional parameter ’Comdition’ which must be declared as follows:

BOOLEAS Condition (nodei, node2)

char snodel, *mnodel;

Before creation of an edge ’Connect_All_Comd’ will call this function. If it
returas TRUE, the edge is created, othervise it isn’t. This feature is useful
to set up visibility graphs: 'Condition’ must return TRUE if 'nodel’ is visible
from 'mode2’ and FALSE otherwise.

BOOLEAN Discomnect (graph, nodei, node2, edge)
QRAPH sgraph;
char snodel;
char *node2;
char s¢edge;

This procedure is used to remove a single edge from the graph. ’edge’ between
‘nodel’ and 'node2’ is removed. TRUE is returned if this edge existed, FALSE
othervise.

void Disconnect_All (graph)
GRAPH sgraph;

This procedure removes all edges from the graph. The nodes remain in the
graph!

LIST eA_Star (graph, Estimate, start, goal, edge_path)
GRAPH egraph;
double (sEstimate) ();
char s®start;
char sgoal;
LIST esedge_path;

The A-Star algorithm tries to find the optimal path from ’'start’ to ’goal’.
Optimal means minimal sum of edge weights along the path.
'Estimate’ is a pointer to a user provided functionm:

double Estimate (node)

char ®node;

It must return an estimate of the cost to go from ’node’ to ’goal’. If
this estimate is always lower than the actual cost, A-Star ®ill find the
optimal path.
If a path exists, A-Star will find it and return a list of the nodes it
passed. In parameter ’edge_path’ it returas a list of the edges it went
through. The two lists have the same length. The first edge is the edge
between the first and the second node, 80 the last entry in the edge list
is always a WULL. If no path exists, NULL is returned.

void Kill_Graph (graph)
GRAPH egraph;

Deletes the nodes, edges and the graph data structure making ’graph’
invalid. The user’s data for the nodes and edges are of course left intact.

117

Module graphics (SUNcore and X Windows interface):

Constants

$define BLACK 0
8define WHITE 1
8define RED 2
$define YELLOW 3
8define BLUE 4
8define GREES 6§
S8define GRAY &

8define X_GRAPHICS 2
Sdefine SUN_GRAPNICS 1
$define NO_GRAPRICS [}

Data types

typedef struct line

Vector pi;

Vector p2;

int color;

int style;
} LINR;

LINE is a line on the SUNcore screen. 'color’' is defined above. ’style’ is
either SOLID, DASHED, or DOTTED.

typedef struct character

{
char c;
Vector pos;
int color;
} CHAR;

CHAR represents a SUlNcore character on the screen.

typedef struct seg

LIST slinelist;
LIST scharlist;

int segnum;
BOOLEAN active;
} sEG;

SEG represents a segment that contains a number of lines and characters. The

lines (LINE) are stored in ’linelist’ and the characters (CHAR) in ‘charlist’.

'segnum’ is the SUNcore segment number. ’active’ is TRUE if the segment is
nonempty and must be included in updates and rotationms.

Procedure descriptioa

void Init_Graphics (source)
LIST ssource;

Initializes SUNcore im the current window and displays a coordinate system.

118

119

Parameter 'source’ is a list of expressioas from the parser. If expression
'BaW’ is found, the graphics are displayed in black and white, even on a
color screen. This cam be useful for screendumps.

If a 'Z00R (x)’ expression is found, then the display is enlarged or
shrunk according to x.

void Init_Text (source)
LIST ssource;

Initializes a new SunVIEW window so that stdout and stdin is mapped to i
Parameter ’'source’ is a list of expressioas from the parser. If expression
'Diagnostics’ is found thea the diagnositics window is displayed.

BOOLEAN Graphics_Active ()

Returas TRUE if SUBcore has been successfully initialized, FALSE otherwise.

void Exit_Graphics ()

Should be called before exiting the program.

void Spin_Graphics ()

Enables the user to rotate the picture around the vertical or thé horizontal
screen axis by moving the mouse horizomtally or vertically respectively.
This procedure erds in the current orientation when the user presses the
middle mouse buttonm.

SEG *Hew_Segment ()

Returns a new segment.

void Kill_Segment (seg)
SEG eseg;

Kills segment ’'seg’.

void Update_Segment (seg)
SEG eseg;

Redravs segment ’seg’. This is needed when there are changes in certain lines
or characters in the segment that are not yet reflected on the screen.

void Update_All_Segmeats ()

Redraws all segments at once.

void No_Update ()

‘After this procedure is called, the screen is not updated whea primitives are
inserted ia or deleted from a segment. This is useful vhen deleting many
primitives at once to avoid repeated recomstruction of the segment.

Updating is turned back om by calling ’Update_Segment’ on any segment.

LINE elew_Line (color, style)
int color;
int style;

Returns a nev line with given color and style (SOLID, DOTTED, DASHED).

void Kill_Line (1)
LIEE s];

Kills line '1°’.

void Set_Line_Pos (1, p1, p2)
LINE el;
Vector pi;
Vector p2;

Changes line ’'l’s positien.

void Get_Line_Pos (1, p1, p2)
LINE e};
Vector pil;
Yector p2;

Returns line’l’'s position.

void Insert_Line (seg, 1)
SEG sseg;
LIBE »1;

Inserts line ’1l’ into segment ’seg’ and displays it immediately, if there
was no previous ’No_Update’.

BOOLEAN Delete_Line (seg, 1)
SEG sseg;
LIBE e];

Deletes line ’1’ from segment ’seg’ and reflects the change immediately, if
there was no previous 'No_Update’.

CHAR slew_Char ()

Returns a new character.

void Kil1_Char (¢)
CHAR c;

Kills character ’c’.

void Change_Char ()

CHAR oc;
Vector pos;
int color;
char ch;

Changes position, color and letter of character ’c’.

void Insert_Char ()
SEG sseg;
CHAR sc;

Inserts character 'c’ into segment ’seg’ and displays it immediately, if there
was mo previous 'No_Update’. -

BOOLEAR Delete_Char (seg, c)
SEG eseg;
CHAR oc;

Deletes character ’c’ from segment ’seg’ and reflects the change immediately,
if there was no previous ’'No_Update’.

void Flush_Text ()

Allows the SunVIEV system tty window to printf. This is a necessary step
because SunCORE somehov disables the SunVIEVW windowing environment...

120

121

void Nore_Text ()

If 'step_text’ is TRUE thea the text is Flushed and execution avaits any
mouse button. Otherwise, the text is just Flushed

Module Ipath (local path planner algorithm):

Procedure description

void Init_LPath ()

Hust be called before the first call of ’Local_Path_Plan’.

void Prep_Local_Path_Plaa ()

Called before each call to 'Local_Path_Plan’ so that goal tolerances are set.

void Bormalize_A_Vector (p1, p2, dir)
Vector pt;
Vector p2;
Vector #dir;

Makes vector ’'dir’ lemgth 1 and orthogonal to the line defined by ’pi’ and
'p2’. ’dir’ will remain in the plane defined by the line through ’pi’ and
'p2’ and the line along the old ’dir’.

MODEL ¢Get_Rin_Obstacle ()

returns a pointer to the model of the closest object to the robot.

BOOLEAN Valid_Strut (p1, p2)
Vector pi;
Vector p2;

Returns TRUE if ’pi’ and ’p2’ is a valid position for an intermediate step.

BOOLEAN Local _Path_Plan (q, pi1, p2, d, path, pict, seg, rot_normal, arm,
deprt, appr)

VAR *q;

Vector pi;

Vector p2;

VYector d;

LIST spath;

LIST spict;

SEG eseg;
BOOLEAR rot_mormal;

ARN_TYPE arm;

double deprt, appr;

Plans a path using a potential field method. The initial joint vectoer ’q’

is assumed and the path #ill lead the (real or imaginary) payload strut to
endpoint positions ’p1’ and ’'p2’. The goal will be approached im direction
’d’. The path will be returned in list ’path’ shich will coataim a joiat
vector (VAR) for each step. List ’pict’ will contain the lines to display
the path and segment ’seg’ will be used. If ’rot_normal’ is TRUE, then the
angle less than 180 deg will be used to rotate the gripper from its start

to its goal orientatiom, which is normally better. If it is FALSE, the other
sense of rotation will be used. which involves an angle of rotation of more
than 180 deg.

122

123

void New_Start_Dir (dir)
Vector dir;

NMust be called before ’Local_Path_Plan’ if the path must leave the start
position in a particular direction. This direction is AGAINST the vector
'dir’, so ’dir’ is normally the approach vector of the robot’s gripper in
start position.

Module 1st (list data structure):

Data types

typedef struct list_element

struct list_element e¢next; /* pointer to the next list element ¢/
char sdata; /¢ pointer to the data ./
} LIST_EL;

Elements of type LIST_EL form the chain of list elements. ’mext’ points to the
next element in the list, ’data’ points to the user data represeated by this
list element.

typedef struct list

{
struct list_element ¢first, *last; /® pointers to beginning and end of liste/
int length; /* number of elements in the list 174
char ssindex; /% pointer to index array ./
} LIST;

LIST is the main list data structure. 'first’ and ’last’ point to the first
and the last element in the LIST_EL chain. ’'length’ stores the number of
elements currently in the list. 'index’ has a pointer to an array of user
data pointers that allow fast random list access. If an index doesn’t exist,
'index’ is NULL.

Procedure description

LIST eBew_List O

Creates a new list (allocates and initializes a LIST data structure) and
raturns a pointer teo it.

BOOLEAB Insert (1st, data)
LIST elst;
char edata;

BOOLEAB Insert_As_First (lst, data)
LIST slst;
char sdata;

'Insert’ and 'Insert_As_First’ are the two procedures to build a list. ’'Insert’
adds the element ’data’ at the end, 'Insert_As_First’ at the beginning of the
list. Existing indeces are destroyed by both procedures.

BOOLEAF Delete (1st, data)
LIST olst;
char edata;

Deletes element ’data’ from the list ’'lst’. Returas TRUK if ’data’ vas found
in the 1ist, FALSE othervise. An existing index is destroyed.

BOOLEASN Is_In_List (1st, data)
LIST elst;

124

125

char sdata;

Returns TRUE if ’‘data’ is found in ’lst’, FALSE othervise.

char ¢Qet_First (1st, current)
LIST slst;
LIST_EL eecurremt;

char ¢Get_Bext (curremt)
LIST_EL escurreamt;

'Get_First’ and 'Get_Next’ allow sequemtial to the list. A procedure
using these functioms typically looks as follows:

void Sequential_Access_Example (lst)
LIST slst;
{
LIST_EL lp;
DATA_ITER esdata;

data = (DATA_ITEW e)Get_First (1st, &lp);
while (1p)
{
Process_Data_Itea (data);
data = (DATA_ITEN ¢)Qet_Next (8lp);
g }
}
In this example the list holds elements of type DATA_ITEN. Since both
'Get_First’ aand ’Get_Bext’ return pointers to type char, a type cast is
necessary in most cases. The pointer variable ’'lp’ points to the curremt
list element. It is initialized to the first list element by 'Get_First’
and updated to the next slement by ’Get_Bext’'. When the end of the list
is reached, ’'lp’ is assigned NULL, so loop control can be done using ’lp’.
If a program comtains mested loops, it is important to declare a separate
element pointer variable for every loop that goes through a list.
Hote that ’lp’ does BOT point to the data element of type DATA_ITEN, but to
the list element of type LIST_EL that represents this data element!

char ¢Get_Eth (1st, n)
LIST slst;
int n;

This function is used for random access. If an index exists, the n-th e¢lement
is returned very quickly, otherwise the functiom steps through the list
sequentially and thus takes a little lomger if ’n’ is large.

n®0 returns the first element. If ’n’' is too large, FNULL is returned.

char sQet_This (curresat)
LIST_EL sscurreat;

returas the data element represented by the list element that ’current’ points
to. ’curreat’ is left umchanged.

char *Get_Last (1st)
LIST eolst;

Returns the last data element of list ’lst’.

void Build_Index (1lst)
LIST elst;

126

Creates an array of poimters to the data elements in the list. Once this index
exists, random accesses using functioa ’det_Bth’ become much faster. Any
function that changes the list will destroy the index automatically!

BOOLEAFN Append (1lst, 1st2)
LIST elst;
LIST ¢lst2;

Appends the elements of ’1st2’ to 'lst’. The list elements are duplicated in
this process, so changing '1st2’ after ‘Append’ has no effect oa ’lst’.

TRUE is returned if ’Append’ was successful, FALSE othervise.

An existing index of ’'lst’ is destroyed automatically!

int List_Length (1st)
LIST elst;

Returns the number of elements in the list 'lst’.

void Empty_List (1st)
LIST elst;

Removes all list elements from list ’lst’ leaving just the LIST data structure.
Any existing index is destroyed automatically.
Bote that the data elements themselves are BOT affected in this process!

void List_Apply_F (1st, Function)
LIST slst;
void (sFunction) ();

Applies the user defined function ’Function’ to all elements of the list 'lst’.
This function must be declared as folloes:

void User_Function (data)
char =data;

‘data’ is the current data element in the list.

void ki1l _List (1st)
LIST elst;

Removes all list elements and the LIST data structure itself, so ’'lst’ is
invalid after ’'Eill_List’. Any existing index is of course deleted too.
Bote that the data elements themselves are NOT affected in this process!

127

Module model (strut and plane obstacle definitions):

Constants

$define STRUT_TYPE O
$define TRIAN_TYPE 1

Data types

typedef struct model

int type; /e

Vector pi, p2, p3; /¢

Vector dir: /*

double r; /e

int id; /e
} MODEL;

NODEL represeats either a
segaent geometrical model

type of model; triangle or strut s/

vector rep (from world) of verticies of model o/
direction of approach to model (if used as subgoal)s/
radius of swept sphere model »/

frame id number for gsm identification e/

svept sphare line segment or plamar triangular

. The volume is the volume

that a sphere of radius ’r’ sveeps shen moving from point ’'pi’ to poimt ’p2°
on a straight line, or betveen the triangle defined by ’p1’, ’p2’,and ’p3’.

Procedures

MODEL *New_Rodel ()

Returas a nev imstance of

a model.

void Set_Nodel_Parameters (m, pi, p2, p3, r)

KODEL om;
Vector pi;
VYector p2;
VYector p3;
doudble r;

Changes all parameters of model 'm’.

void Set_Nodel_Strut_Pos (m, p1, p2)

NODEL em;
Vector pi;
Vector p2;

Changes the endpoiats of model ’'m’ leaving its radius unaffected.

void Set_NRodel_Radius (m, r)

RODEL om;
doudble r;

Changes model ’'m’s radius

void Set_Nodel_Dir (m,
MODEL em;
double dir;

leaving its endpoints unaffected.

dir)

Changes model ’'m’s direction leaving its o rints unaffected.

void Set_Nodel_ld (m, id)

128

NODEL *m;
int id;

Sets model ’'m’s frame id.

double Nodel_Distance (mi, m2, p1, p2)
MODEL semi;
NODEL *m2;
Vector ept;
Vector *p2;

Computes the shortest distance betveen models ’'m1’ and ’'m2’. It returns the
distance and the two closest points on the line segments inside the swept
sphere cylinder or triangle (parameters ’p1’, ’p2’).

void Get_Nodel_Strut_Pos (m, p1, p2)
NODEL om;
Vector epi;
Vector *p2;

Returns the model endpoints in ’pl’ amd ’p2°’.

void Get_Model_Radius (m, r)
MODEL om;
double er;

Returns the model radius in ’'r’.

void Get_NModel _Dir (m, dir)
NODEL om;
double edir;

Returas the model directionm in ’'dir’.

void Get_Nodel_Id (m, id)
RODEL om;
int »id;

Returns model ’m’s frame id.

void Swap_Strut_Endpoints (m)
NODEL eom;

Exchanges the model’s endpoints.

void Kill_Nodel (m)
NODEL om;

Kills model ’'m’ (frees its memory space).

Module parser :

Data types

typedef struct expression
{

char skeyword;

LIST spar_list;
} EXP;

EXP represents expressions in an input file. An sxpression consists of a
keyword and optionally a aumber of parameters in parentheses, separated
by commas. Examples:

keyvord

keyword (parameter)

keyvord (parameteri, parameter2, parameterd, parameter4d)
‘keyword’ points to the keyword string converted to uppercase. ’par_list’
contains a list of strings that represent the parameters. They are also
converted to uppercase.

Procedure

LIST sNew_Source (fname)
char fname(];

This procedure opeas the text file 'faame’ and parses it according to the
module’s grammar. If the file doesn’t exist or there are syntax errors, then
a NULL pointer is returmed, othervise a list of expressions as found in the
file is returned.

It is possible to set 'fmame’ to NULL. In this case, an empty expression list
will be returned without error message.

EBXP eQet_First_Exp (source, lp, keyword)
LIST #source;
LIST_EL sslp;
char skeyword;

EXP sGet_BNext_Exp (lp, keyword)
LIST_EL eslp;
char skeyword;

*Get_First_Exp’ and ’Get_Bext_Exp’ are very similar to ’'Get_First’ and
'Get_Next’ in the list module. In fact, if ’'keyword’ is NJULL, they are
squivalent. If ’keyword’ is a string, then ’‘det_First_Exp’ will return

the first expressioa with this keyword and ’Get_Next_Exp’ will retura the
next occurrence of an expressioa with this keyword from the curreat point

in the list. The matching is case insensitive. The readout procedures are
compatible to the list module im the sense that a part of the expression

list can be read with the procedures in the list module and then a particular
keyword can be searched from that point using ’'Get_Next Exp’. If no matching
keywvord is found, NULL is returned and ’lp’ is set to NULL.

char *Get_Keyword (exp)
EXP sexp;

Returns the uppercase keyword string of expression ’'exp’.

int Fb_Par (exp)
EXP eexp;

129

130

Returns the number of parameters of expression ’exp’.

char ¢det_Par (exp, nbd)
EXP sexp;
int nb;

Returas uppercase parameter string number ’nb’ in expression ’‘exp’. The first
parameter has 'ab’ = 0, If ’'nb’ is too large, WULL is returned.

BOOLEAS det_Double (par, v)
char separ;
double ev;

Converts string 'par’ into double ’v’. Returas TRUE if successful,
FALSE othervise.

BOOLEAR Get_Int (par, v)
char *par;
iat oev;

Converts string ’par’ irto int ’v’. Returns TRUE if successful,
FALSE otherwise.

void Kill_Source (source)
LIST »source;

Kills the source list ’source’. Kills all expressions in it and the
list itself.

Module ppLib (path planner CTOS message library):

Constants

8define
$define
Sdefine
Sdefine
Sdefine
Sdefine
8define
Sdefine
#define

$define
Sdefine
Sdefine
sdefine

RSG_PP
NSG_PP_INITIALIZE
NSG_PP_SHUTDOVE
NSG_PP_STARTPATH
NSG_PP_PLANPATH
RSG_PP_REPLANPATN
NSG_PP_ALTPLABPATH
RSG_PP_DEMNO_EXEC
RSG_PP_INVKIN

PP_NARE
ALT_PP_JARE
PP_TENPDIR
PP_KNTPT_FILENANE

/e 8define STRUT_LENGTH

Sdefine
Sdefine

sdefine
8define
8define
8define
$define

PP_DEFAULT_SPEED
PP_DEFAULT_BLEND

X_OFFSET (
S_OFFSET (
X_NIB (
Y_KIN (
Y_RAX (

typedef struct

{

ARN_TYPE am
JOIBT_VECTORS jints ;

}

STARTPATH_TYPE ;

holds a joint vector and

typedef struct

ARR_TYPE arm
TRABSFORN pos
double speed ;
double time ;
BOOL strut ;
double deprt ;
double appr
}
PLANPATH_TYPE ;

Data block to be passed by CTOS message to PathPlanner, for plamning paths.

Procedures

(NSG_USER+300)
(RSQ_PP+ 1)
(RSG_PP+ 2)
(NSG_PP+ 3)
(NSG_PP+ &)
(NSG_PP+ B)
(NSG_PP+ 6)
(NSG_PP+ 7)
(NSG_PP+ 8)

“PathPlanner”
“AltPathPlanner”
»/usr2/testbed/tmp/"
“pathseg"

0.89 ¢/
0.30
0.5

©

the arm it belongs to.

pplnitialize

- initialize path planner

131

RETURES : Ok or ERROR indicating success in initializing path planner
PARARETERS : TID.TYPE tid - TID of task calling ppStartPath
char efilename - environment configuration file
.0 ssee L] sssse/
/oo ese see . sssees
ppShutdown - shut down path planner
RETURES : (none)
PARANETERS : TID_TYPE tid = TID of task calling ppStartPath
] esess/
/ (11323]
ppStartPath - set robot joint position to start of path
RETURES: 0K if joimt positioms were set,
ERROR if not set, e¢.g. if joint value is out of range
PARANETERS: TID_TYPE tid -~ TID of task callimg ppStartPath
ARK_TYPE arm - LEFT_ARN or RIGHT_ARM
JOINT_VECTORS sjvec - vector of joint positions
SeS0SSS P "o ““““.‘O‘.“./
/esssssseses] (11}
ppResetPosition - reads curremt joint positions and calls ppStartPath
RETURES : chare to file name, or SULL if error occurred
PARANETERS : TID_TYPE tid - TID of task calling ppResetPosition
ARN_TYPE arm - LEFT_ARR or RIGHT_ARR
Y se8 ‘./
/e [] se8see
ppPlanPath -~ plan a path and write to file
RETURES: char® to file name, or BULL if error occurred
PARANETERS : TID_TYPE tid - TID of task calling ppPlanPath
ARNA_TYPE arm « LEFT_ARN or RIGHT_ARN
TRANSFORN sdestPos -~ destination position of gripper
double speed - motion speed [ratio of full speed]
double time ~ time to complete path segment (seconds]
BOOL strut « TRUE if carrying strut
double deprt = length of depart segment
double appr = length of approach segment
Note: speed OR time should be specified, and the other set to zero.
/
/ see ees
prPReplanPath - request alternate path for previous destimation
RETURNS : chare to file name, or FULL if error occurred
PARANKTERS : TID_.TYPE tid - TID of task calling ppPlanPath
ARN_TYPE arm -~ LEFT_ARRK or RIGRT_ARN

. . sseessssssesssesee/

132

Module ppmain (path planning procedures):

Constants

8define DEPAR_LEF 0.20
8define APPR_LEN 0.15

/* imstructions constants that can be returned to main ¢/

/e8detine ERROR O¢/ /* illegal imstruction received - skip ./
Sdefine MOVE 1 /¢ start path plaaaing o/
$define GRASP 2 /¢ add payload to robot, remove a strut from env ¢/
Sdefine UNGRASP 3 /¢ remove payload, add strut to eav ./
8detine UNGRASP_FIEEK 4 /% same without position specification. Place

strut where robet left it. ./
#define ADD_STRUT 8 /= 1 strut to eaviroameat ./
$define RENOVE_STRUT 6 /* 19ve strut from emvironmeat ./
8define JOINTS 7 /* -.: joint vector directly s/
8define VIEW 8 /% stop and display for user (graphics mode only)s/
$define QUIT_PP 9 /* quit this program o/
Sdefine ARN_LEFT 10 /s sets to left arm. ./
$define ARN_RIGHT 11 /+* sets to right arm. ./

Procedures

void Init_Instructioms (srclst)
LIST esrclLst) ;

Prepares the ’srcLst’ for parsiag.

int Strut_Parameters (expr, p1, p2, abpar, retcode)
EXP sexpr;
Vector »p1;
Vector op2;
int abpar;
int retcode;

Reads the strut position from 'expr’. ‘’expr’ must have 4 or 6 parameters

dependiag on the reresentation method. There should be ’nbpar’ more parameters

in ’expr’. If no errors occur, them the strut position is returned in ’pi’
and 'p2'. Else, ERROR is returned. .

int Qet_Instruction (p1, p2, dir, qv, arm)
Vector epl;
Vector ep2;
Vector edir;
VAR eoqv;
ARN_TYPE arm;

Gets the mext imstructioa from a file or from the CIRSSE interface. The
instruction parameters are assigmed to ’pi’, ’p2’, ’'dir’, ’qv’. The procedure
returns the instruction code number.

void Output_Path (filename, pathlLst, arm)
char sfilename;
LIST spathlst;
ARR_TYPE arm;

Writes the path to a file, either in a Silma readable file, or a CIRSSE kntpt

133

134

depending upon CTOS_ACTIVE flag and PREVIEVER flag.

STATUS Initialize_Path_Planner (configFile)
char sconfigFile;

Initializes all path planner modules, must be called before planner is invoked.

void Shutdown_Path_Planner (void)

Cleans up memory in planner’s stack. Exits graphics routines.

STATUS Demo_Exec (void)

Reads instructions from an input file for setup and execution.

135

Module robot :

Procedures

———— e

void Init_Robot (source)
LIST =source;

The robot is initialized and oriented according to the ROBOT command in the
input file. If no ROBOT command exists, the robot coordinate system is equal
to the world coordinate system. (This is the case at CIRSSEK)

BOOLEAX Joints_In_Range (qq)
VAR *qq;

Returns TRUE if all joint values in ’qq’ are within range. FALSE otherwises.
Inserts joint values into the list ’out_of_range’.

BOOLEAN Set_Pos_Joints (new_q)
VAR *nev_q;

Sets the robot to the pose defined by joint vector ’new_q’ and updates the
transformation matrices.

VAR eQet_Pos_Joints ()

Returns a Hew_Var to the curreant robot.c state of the joint vector.

iat Get_First_Locked_Joint (current)
LIST_EL eecurrent;

Returns the first joint which is out of range.

int Get_Next_Locked_Joint (current)
LIST_EL sscurrent;

Returns the next joinmt.

void Empty_Locked_Joint_List ()

Empties the list ’out_of_range’.

int Lemgth_Locked_Joint_List ()

Returns the number of joints which are out of range.

void Update_Nodel ()

Updates the swept sphere models of the links to the current joint vector.

void Update_Picture ()

Updates the wire frame picture of the robot to the curreat joint vector.

BOOLEAN Is_Revolute_Joimt (mb)
int ab;

Returns TRUE is link 'nb’ is a revolute joint, FALSE otherwise. The first
link is 1link 1.

NODEL sLink_Nodel (mb)
int nb;

Returns the model of link ’ab’ or NULL if there is no swept sphere modsl of
this link. If the model was not up to date, it is automatically updated.
The first link is link 1.

BOOLEAN Consider_For_Self_Collisiom (abi, nb2)
int nbi;
int nb2;

Returns TRUE if link ’nbi’ and link ’'mb2’ could collide and thus have to be
considered in the collision avoidance procedures.
The first link is link 1.

BOOLEAR Consider_For_Arm_Collisiom (ab)
int nb;

Returns TRUE if link ’mb’ could collide with an obstacle in the eavironment
and thus has to be considered in the collisiom avoidance procedure.
The first link is link 1.

Vector Origin (nd)
int nb;

Returns the origin of the coordinate frame of link ’nb’. Origin (0) returns
the origin of the robot's coordinate system.

void Axis (ndb, origim, dir)
int nb;
Vector sorigin;
Yector edir;

Returns the axis of rotation (revolute) or the direction of motion (prismatic)

of joint ’'ad’. The origin is also returned.

double Joint_Value (nb)
int nb;

Returns the curreat joint value of joinmt ’nb’'. The first joimt is number 1.

void Joint_Range (nb, lower, upper)
int nb;
double *lower;
double supper;

Returns the lowest and the highest possible value of joint ’ab’. The first
joint is number 1.

double Joint_Weight (nb)
int nb;

Returns the weight of joiat ’nb’ used for solving the Jacobian equation.
High valuwes lead to high velocities of that joint.
The first joint is number 1.

void Grasp.Part (p1, p2, rad, strutld)
Vector pi;
Yector p2;
double rad;
int strutld;

Puts a swept sphere cylinder as described by ’'pi’ and ’'p2’ and ’rad’ in the
robot’'s gripper. The positions of the endpoints will change in this process,

but the length of the cylinder will be retained. Connects gsm frame to tool.

void Ungrasp_Part (p1, p2, strutld)
Vector opi;
Vector »p2;

136

int strutld;

Empties the robot’s gripper and returns the last endpoint positions of the
payload. Disconnects strutld’s frame from tool.

BOOLEAN Robot_Carrying ()

Returns TRUE if the robot is currently carrying a payload, FALSE otherwise.

void Set_Pos_To_Payload (m)
MODEL em;

Sets the endpoint positions of model 'm’ to the positioas they would have,
if the model was the payload of the reobot.

void Set_Pos_To_Gripper (m)
NODEL *m;

Sets the endpoint positions of model 'm’ to the positions they would have,
if the model was the robot'’s gripper.

137

Module spec (CIRSSE/RAL machine specifications):

Constants

$define EARTH
8define MARS
$define NERCURY
8define JUPITER
$define SOL
$define VENUS
#define NEPTUNE
Sdefine NOON

0x23005a06
0x13004882
0x1700c726
0x1700cdd?
0x21000411
026524041 eb
0x51006ee6
0x51001639

Procedure description

BOOLEAN Graphics_ 0K ()

Returns TRUE if the machine on which the program is running has a graphics
screen and suncore is availabdle.

BOOLEAS Color_OK ()

Returas TRUE if the machine on shich the program is running has a color screen.

138

139

Module stack :

Data types

typedef struct stack_el
{
struct stack_el sprev;
char e¢data;
} STACK_EL;

STACK_EL represents an satry of a stack. 'prev’ is a pointer to the previous
entry and ’data’ points to the user data represented by this stack element.

Procedure description

void New_Stack (sp)
STACK_EL eepp;

Nust be called before using a stack to imitialize stack pointer 'sp’. ’sp’ is
declared as follows:

Definition:
STACK_EL esp;

Initialization:
New_Stack (&sp);

void Push (sp, data)
STACK_EL essp;
char sdata;

Places ’data’ on stack ’sp’.

char sPop (sp)
STACK_KL sesp;

Returns the last data entry and removes it from the stack.

char *Read_Top (sp)
STACK_EL sesp;

Returns the last data entry without chaaging the stack.

Module usrFlags (compiler directives):

Constant Flags

sdefine
$define
8define
$define
Sundef

NAB_13_LOOP
STEP_BY_STXP

/* comment out to remove man from the loop
/* prompt for viewer updates?

CTOS_ACTIVE /¢ indicates that PathPlanner.c, not main.c, is active

DIAGNOSTICS
PREVIEVER

/% we are in previev mode, not curreamt display mode

s/
./
./

./

140

Module vector :

Data types

typedef struct

float x, ¥, %;
} VYector;

Represents a 3x1 vector with elements ’'x’, 'y’, and ’xz’.

typedef struct
{

Yector vi, v2, v3;
} Ratrix;

Represents a 3x3 matrix with column vectors 'vl’, 'v2’, and ’v3d’.
typedef struct
{
Hatrix m;

Vector v;
} B_Rasrix;

Represents a 4x4 homogeneous transformation matrix. ’m’ is the 3z3 matrix
for rotation in the upper left cormer. ’'v’ is the translatiom vector in
the upper right corner. The last rov is not stored, it is assumed to be
[0001].

Procedurs descriptioa

Vector Vec (x, y, 2)
double x;
double ¥y
double z;

Creates a vector with elements x, y, =z and returas it.

Matrix Mat (vi, v2, v3)
VYector vi;
VYector v2;
Yector v3;

Creates a satrix with columm vectors vi, v2, v3 and returms it.

E_Natrix H_Nat (m, v)
Ratrixz m;
Vector v;

Creates and returns a homogeneous matrix vith matrix m and 4th column vector v.

Yector Add (a, b)
Yector a;
Vector b;

Returns the sum of vectors a and b. (elementwise)

141

142

Vector Sudb (a, b)
Vector a;
Yector b;

Returns the difference a-b. (elementwise)

Vector Rul (a, s)
Yector a;
double s;

Multiplies the elements of a with s and returas the result.

Vector Div (a,)
Yector a;
double s;

Divides the elements of a by s and returns the rasult.

Vector Beg (a)
Vector a;

Returns the elementwise negation of vector a.

Vector Bull_Vector ()

Returns the null vector [0 0 O].

double Dot_Prod (a, b)
Vector a;
Vector b;

Returns the scalar or dot product of vectors a and b.

Vector Cross_Prod (a, b)
Yector a;
Vector b;

Returns the cross product of vectors a and b.

NMatrix Dyad_Prod (a, b)
Vector a;
Vector b;

Returas the outer or dyadic product of vectors a and b.

double Length (a)
Vector a;

Returns the length (absolute value) of vector a.

Vector Scale (a, len)
Vector a;
double len;

Changes the length of vector a to ’len’ and returns the result.
Prints an error message if ’a’ is a null vector.

143

Vector Scale_If Longer (a, len, limit)
Vector a;
double len;
double limit;

If the length of vector a is longer than ’limit’ then its length is changed
to ’len’, otherwise it is returned unchanged.

Vector Normal (a, b)
Vector a;
Yector b;

Returns vector ’'a’ projected on a plane mormal to vector *b’.

Vector Center (a, b)
Vector a;
Vector b;

Returns a vector whose endpoint is in the center between the endpoints of the
vectors a and b.

BOOLEAN Parallel (a, b)
Vector a;
Yector b;

Returns TRUE if vectors a and b are parallel, FALSE otherwise.

double Distance_Point_Line (point, line_p1, line_p2, line_result)
Yector point;
Vector lime_pi;
Vector line_p2;
Vector sline_p_result;

Returns the shortest distance between ’point’ and the line bounded by the
points ’line_p1’ and ’line_p2’. ’'line_result’ will contain the point on the
line which is closest to 'point’.

VYector NxV_Prod (m, v)
Natrix m;
VYector v;

Returns the product of matrix m and vector v.

Vector WRxV_Prod (hm, v)
N_Natriz ha;
VYector v;

Returas the product of the homogeneous matrix hm and vector v. The 4th element
of ’v’ and the result are omitted and assumed to be 1.

Natrix MxN_Prod (m1, m2)
Ratrix m1;
Natrix =»2;

Returns the product of satrices m1 and m2.

144

H_Ratrix HNxHN_Prod (hmi, hm2)
H_Natrix hmi;
H_Natrix hm2;

Returns the product of the homogeneous matrices hmi and hm2.

double Det (m)
Natrix m;

Returns the determinant of matrix m.

Matrix Transpose (m)
Natrix m;

Returns the transpose of matrix m.

Matrix Inv (a, ok)
Ratrix =;
BOOLEAYN #ok;

Returns the inverse of matrix m. If inversion was possible, ’ok’ is set to
TRUE, othervise to FALSE.

Matrix I_NMatrix ()

Returns the identity matrix (1 00
010
00 1)

BOOLEAS Plane_Line_Intersection (plane_p,plane_di,plane_d2, line_p,line_d,
t_planei, t_plane2, t_line, distance)
Yector plane_p;
Yector plane_di;
Vector plane_d42;
VYector line_p;
Vector line_ d;
double st_planel;
double et_plamel;
double st_line;
double edistance;

Intersects the plane defined by location vector ’plane_p’ and direction
vectors ’plane_di’ amd 'plame._d2’ with the lime defined by location vector
*line_p’ and direction vector ’lime_d’. If this intersection is possible,
TRUE is returned and the parameters of the intersection point for both
the plane and the line are returned. The two equations for the intersection
point are:

ip = plase_p + t_planel ¢ plane_dl ¢ t_plane2 * plane_d2

ip = line_p + t_lime ¢ line d
If intersectiom is mot possible (lime is parallel to the plane) then FALSE
is returmed and the distance between the plane and the line is returned in
‘distance’.

double Distance_Line_Line (ai, a2, b1, b2, a_result, b_result)
Vector ail;
Yector a2;
Vector bi;
Vector b2;
Vector ea_result;
Vector ¢b_result;

145

Returas the distamnce between the line bounded by al

and a2 and the line

bounded by bi and b2. The points of closest distance on the lines ars

returned in ’a_result’ and ’b_result’.

Distance_Seg_Plane (p1, p2, a, b, c, s_result, p_result)

Vector pi;

Vector p2;

Vector a;

Vector b;

Vector ¢;

Vector ¢s_result;
Vector sp_result;

Returns the distance between the segment bounded by
and the planar triangle bounded by the verticies a,
The poiats closest orn the segment and the plane are
in s_result and p_result, respectively.

Vector Random_Vector (len)
double len;

Returns a random vector of maximum leagth ’len’.

void Priat_Vector (a)
VYector a;

Prints vector a to the screen.

void Print_Natrix (m)
Natrix m;

Prints matrix = to the screen.

void Print_H_Matrix (hm)
H_Matrix hm;

Prints the homogeneous matrix hm to the screen.

pl and p2
b, and c.
returned

PART II: Planning Collision Free Paths for Two Cooperating Robots Using a
Divide-and-Conquer C-Space Traversal Heuristic

CONTENTS

LIST OF TABLES vi
LIST OF FIGURES vii
ACKNOWLEDGEMENT 1X
Abstract L X
1. Introduction 1
1.1 Motivation 1
1.2 Direction of this Work 5
121 Assumptions. L 5

122 Goals. 6

1.2.3 Strategy 6

1.24 Results. 8

1.3 Overviewof Thesis 9

2. Literature Review 11
2.1 Path Planning for Single Robots 11
2.1.1 The Graph Search Approach 12

2.1.2 The Potential Fields Approach 22

2.1.3 The Human Assisted Approach 26

2.2 Path Planning for Cooperating Robots 28
2.3 Other Related Areas of Research 32
2.3.1 Mobile Robot Path Planning 32

2.3.2 Coordination of Multiple Robots 33

2.3.3 Piano Mover’s Problem 33

2.3.4 Nonholonomic Motivii Planning 34

2.4 Summary of the Literature Review 34
2.4.1 Difficulties With Complete Solutions 35

2.4.2 Practical Incomplete Solutions 35

2.4.3 Potential Fields Solutions 36

2.4.4 Cooperating Robots 36

3. Statement of the Problem
3.1 Background
3.2 Assumptions. e e
3.3 Goals. e
3.4 Single Robot Path Planning Problem Statement

3.5 Cooperating Robot Path Planning Problem Statement

4. Divide-and-Conquer C-Space Traversal Heuristic

4.1
4.2

4.3

4.4

4.5
4.6

Motivation for a New Approach

Conceptual Description of Heuristic
421 More?2D Examples o oL
422 A3Dexample. o
4.2.3 Philosophy Behind the Heuristic.

Vector Description of Heuristic

4.3.1 Failure Condition
Computing Search Directions
4.4.1 Selecting a Procedure L

Prioritizing Search Directions

Comparison of the Heuristic to the Literature

5. Utilizing the Heuristic for Robot Path Planning

3.1

Single Robot Path Planning

53.1.1
5.1.2
5.1.3
5.1.4
9.1.5
5.1.6

Handling Robots with Mixed Joint Types
Joint Limit Problems,
Choosing A o i e
Choosing Numberof Bins
Multiple Robot Configurations

Singularity Concerns

Cooperating Robot Path Planning

5.2.1
3.2.2
5.2.3
3.2.4

Choosing a Lead Robot
Handling Cooperating Redundant Robots

Multiple Robot Configurations

Singularity Concerns

5.3 String Tightening Lo

i

77

6.

7.

8.

5.3.1 History of Smoothing 83

5.3.2 String Tightening Algorithm 84
5.3.3 Comparison to Other Path Smoothing Approaches 88
5.4 Handling Constrained Motions 88
Implementation and Results 0 L. 89
6.1 Characteristics Common to All Implementations 89
6.1.1 Heuristic is Applied Generically 90
6.1.2 Geometric Modeling with Polytopes 90
6.1.3 Hierarchical Interference Detection 90
6.1.4 Animationof Paths 0 92
6.1.5 Description of Programs 93
6.2 CIRSSE Testbed 95
6.2.1 Single Puma 560o 96
6.2.2 Single 9 DOF Robot 100
6.2.3 Cooperating Puma 560’s 102
6.2.4 Cooperating 9 DOF Robots 106
6.2.5 Effect of String Tightening 110
6.3 NASA Langley’s Automated Structure Assembly Lab 111
6.4 Cooperating Pumas Assemblea Truss 113
Discussion of the Path Planning Strategy 117
7.1 Completeness e 117
7.2 Computational Complexity 118
7.2.1 Possible Benefits of Parallel Processing 119
7.3 Overall Effectiveness Lo 120
Conclusions and Future Work 121
8.1 Conclusions 121
8.1.1 Advantages 122
8.1.2 Disadvantages Lo Lo 123
82 Future Work oo 124
8.2.1 Improvement to String Tightening Process 124
8.2.2 Integration with the CIRSSE Geometric State Manager 125

v

8.2.3 Utilization of Parallel Processing 125
8.2.4 Guaranteeing Completeness 125
8.2.5 Decidability 126
LITERATURE CITED i .. 127
APPENDICES o 136
A. CIRSSE Testbed Kinematic Frames, .. 136
A.l1 Coordinate Frames 136
A.l.1 Assignment/Labeling of Frames 136
A.2 Software Joint Limits for the PUMAs 140
A3 PoseNames 142
. Data for Examples Presented in Thesis 146
B.1 Data for Examplesland 2 146
B.2 Data for Example3 147
B.3 Data for Example 4 148

v

Table 2.1
Table 2.2
Table 6.1

LIST OF TABLES

Single Robot vs Cooperating Robot Path Planning 28
Mobile Robot vs Manipulator Path Planning 33

Summary of Results for CIRSSE Testbed Examples (times in
seconds)o 97

vi

Figure 1.1
Figure 1.2
Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 3.1
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 5.1
Figure 5.2
Figure 6.1
Figure 6.2
Figure 6.3
Figure 6.4
Figure 6.5
Figure 6.6

LIST OF FIGURES

Two 9-DOF Robots Working Cooperatively 2
The CIRSSE Testbed 4
A 2D Planar Robot and its Configuration Space 13
Exhaustive Mapping of Concavities Using A* Heuristic 14
Goal Directed Sliding 17
Vector Based Divide-and-Conquer 20
Hypercube Subdivision Algorithm 31
Choice of Goal Joint Angles May Affect Solvability 40
2D Example of C-Space Traversal Heuristic 52
Example Which Dismisses an Intermediate Point 55
Scenario Which Would Result in Non-Disjoint C-Space 56

Example with Non-Disjoint Safe Space and Multiple Searches 57

3D Example of C-Space Traversal Heuristic 57
2D Example for .-hich Heuristic Fails by Cycling 61
Procedure 3 vs Procedure4 68
Local Effect During String Tightening 86
String Tightening May Not Produce Optimal Path 87
Some 2D Polytopes 91
Flowchart of Path Planning Program 94
Sample Results for Single Puma (Example 1) 98
Start Configuration for Example 1. 99
Trace of Payload Path for Example ! 99
Sample Results for Single 9 DOF Robot (Example 2) 101

vii

Figure 6.7

Figure 6.8

Figure 6.9

Figure 6.10
Figure 6.11
Figure 6.12
Figure 6.13
Figure 6.14
Figure 6.15
Figure 6.16
Figure 6.17
Figure A.1

Figure A.2

Sample Results for Cooperating Pumas (Example 3) 104

Start Configuration for Example3. 105
Goal Configuration for Exampled 105
Sample Results for Cooperating 9 DOF (Example4) 108
Start Configuration for Example4. 109
Goal Configuration for Example4 109

String Tightening a Path for Cooperating Nine DOF Robots . 110
NASA Langley’s Automated Structure Assembly Lab 114
6 DOF Merlin Robot with End Effector for Truss Assembly . 115

102 Strut Truss Structure 115
Workcell for Cooperating Pumas Assembling Truss 116
Coordinate Frame Assignments 144
Left Half Coordinate Frame Assignments 145

viii

BERE o6 X

Abstract

A method has been developed to plan feasible and obstacle-avoiding paths for
two spatial robots working cooperatively in a known static environment. Cooperat-
ing spatial robots as referred to herein are robots which work in 6D task space while
simultaneously grasping and manipulating a common, rigid payload. The approach
is configuration space (c-space) based and performs selective rather than exhaustive
c-space mapping. No expensive precomputations are required. A novel, divide-
and-conquer type of heuristic is used to guide the selective mapping process. The
heuristic does not involve any robot, environment, or task specific assumptions. A
technique has also been developed which enables solution of the cooperating redun-
dant robot path planning problem without requiring the use of inverse kinematics
for a redundant robot.

The path planning strategy involves first attempting to traverse along the
configuration space vector from the start point towards the goal point. If an un-
safe region is encountered, an intermediate via point is identified by conducting a
systematic search in the hyperplane orthogonal to and bisecting the unsafe region
of the vector. This process is repeatedly applied until a solution to the global path
planning problem is obtained. The basic concept behind this strategy is that better
local decisions at the beginning of the trouble region may be made if a possible way
around the “center” of the trouble region is known. Thus, rather than attempting
paths which look promising locally (at the beginning of a trouble region) but which
may not yield overall results, the heuristic attempts local strategies that appear
promising for circumventing the unsafe region.

Although this method cannot guarantee finding a solution even if one exists,
and in spite of its O(kn"l) (where k = 2 or 3 as implemented) complexity for
n degree of freedom problems, it has demonstrated the ability to solve a variety of

practical yet potentially difficult path planning problems within a reasonable amount

PRECEDING PAGE BLANK NOT FILMED

of computation. The method inherently handles singularities and is applicable to
robots having any number and type of joints. Parallel processing could be used to
greatly reduce solution time.

Because the main emphasis of the path planning method is to produce a fea-
sible path without regard to any type of optimality, the paths developed are often
rather inefficient. Thus, a configuration space based algorithm was developed to
modify any feasible path found by the planner into a more efficient one, where
efficiency is measured by the length of the c-space trajectories.

Although the key motivation behind this work was to address the path plan-
ning problem for two cooperating robots, the methods developed are directly appli-
cable to single robots as well. The path planner is implemented in C and utilizes
polytope models of the robots and obstacles for purposes of interference detection.
The path planner is demonstrated via computer graphics simulation on a Sun Sparc-
Station 1 for several single and cooperating robot cases, including cooperating nine

degree of freedom (1P-8R) robots.

X1

CHAPTER 1

Introduction

1.1 Motivation

Robotics is a technology with a promising future. The explosion of knowledge
resulting from past and present research efforts will manifest itself in robotic systems
capable of emulating the human attributes of mobility, dexterity, intelligence, and
sensory perception. There will be mobile bases with multiple cooperating arms
having extensive sensing capability which are able to receive high level instructions
and translate those instructions into a specific sequence of low level actions required
to execute the desired task. Robotic systems of the near future will strive for
increased flexibility, improved reliability, and greater autonomy.

One issue which arises in attempts to develop more autonomous robotic sys-
tems is the path planning problem. The path planning problem involves determining
if a continuous and obstacle avoiding path exists between a robot’s start and goal
positions, and, if so, to determine such a path. If the mathematical space of concern
is considered to be the configuration space (c-space) of the robot, then the problem
is effectively that of finding a connected graph through c-space between the start
and goal positions which traverses only feasible and collision free points. This path
planning problem can become very computationally intensive. In fact, an upper
bound on the complexity of the n degree of freedom (dof) path planning problem is
O(n™), i.e., complexity of the path planning problem is exponential in the number
of dof [1-3]. To illustrate the rapid growth in complexity with number of dof, note
that a six dof problem would be more complex than a two dof problem by a factor
of 66 /22, or 11,664.

A subset of the general path planning problem just described is the path

planning problem for two cooperating robots. Robotic cooperation herein refers to
the scenario whereby both robots simultaneously grip and manipulate a common,
rigid, payload. Since the two arms grasp the object rigidly, the relative position
and orientation of the two grippers must be invariant during the motion. As an
example of two arm cooperation, refer to Figure 1.1, where two nine degree of

freedom robots are shown cooperatively manipulating a long, cylindrical payload.

Figure 1.1: Two 9-DOF Robots Working Cooperatively

The effective number of degrees of freedom or mobility, m, for two spatial robots

working cooperatively in six dimensional task space can be simply computed from:
m=mny+ng—=6 (1.1)

where n; represents the number of degrees of freedom for robot z, and the '—6’ term
results from the closure constraint imposed by cooperation.

There are many potential applications for two arm cooperation. For example,
a space station will most likely be built using robots to minimize the expense and

risk of putting humans into space. In order to be most effective, the robot arms

would likely cooperate and be autonomous or at least semi-autonomous. The at-
tractiveness of lightweight robots for space applications increases the likelihood that
robotic cooperation would be necessary to manipulate large or massive payloads.
In industry, robotic cooperation might be employed for moving very large or very
flexible payloads which exceed the capacity of a single arm or require support at
more than one point. Cooperating robots could also be used to manipulate two
parts with mating surfaces but which are not fastened to each other.

The addition of a second manipulator for cooperative work leads to an inher-
ently complex system. One key research issue and open problem associated with a
system of cooperating robots is the path planning problem. The cooperating robot
path planning problem must consider not only collision avoidance but also the kine-
matic closure requirement that both robots are able to reach their respective grasp
positions at all times. Dooley [4] shows how the closure constraint plus obstacle con-
straints for cooperating planar robots can combine to produce a configuration space
containing many unusually shaped unsafe regions and relatively little safe space.
One can conclude both intuitively and from Dooley’s work that the path planning
problem in the cooperating robot case will typically be more difficult than in the
single robot case.

Numerous approaches to the general single arm path planning problem have
appeared in the literature. Most do not appear directly suited to the case of two
cooperating robot arms. Many of these approaches do, however, attempt to find a
path while applying some heuristic to selectively search configuration space. The
only practi~al planners to date for a general six degree of freedom (dof) robot in-
volve simplifications or heuristics and are not complete, i.e., they cannot guarantee
finding a solution even if one may exist. Many of the approaches in the literature
which do address path planning for cooperating robots consider only planar sys-

tems and cannot be practically extended to the case of two robots having six or

more dof each. Some researchers have solved the cooperating arm path planning
problem with multi-dof spatial (working in 6D task space) robots but they present
results only for relatively (or completely) obstacle-free environments. The difficulty
which researchers have experienced in trying to solve the general cooperating robot
path planning problem is evidence of the inherent complexity of the problem and
highlights the need for further study.

The work presented herein was funded by the Center for Intelligent Robotic
Systems for Space Exploration (CIRSSE), a NASA sponsored research center at
Rensselaer Polytechnic Institute (RPI), and is part of CIRSSE's efforts to develop
autonomous and teleoperated single and cooperating robot systems for use in space.
The CIRSSE testbed, a computer graphics representation of which is shown in Fig-

ure 1.2, includes two nine dof robots which may work independently or cooperatively.

=

\‘l--"

rl 7

Figure 1.2: The CIRSSE Testbed

Each nine dof robot consists of a 6 dof (6R) Puma 560 mounted to a 3 dof (1P-
2R) platform. As shown in the figure, each platform has a translate, a rotate, and
a tilt axis. The testbed has extensive sensing capabilities, including various CCD
cameras, laser range finding, and force/torque sensing end effectors. The principle
motivation for this work was the desire to develop a practical and potentially useful
path planner for cooperating robot scenarios on the CIRSSE testbed. Nonetheless,
the strategy herein is completely general and no assumptions are made which would

limit the usefulness of the approach to specific robots, environments, or tasks.

1.2 Direction of this Work

This section briefly summarizes the assumptions, goals, strategy, and results

of the work presented in this thesis.

1.2.1 Assumptions

This work assumes the following:
1. Forward kinematic models of the robots are available.

2. Inverse kinematic models of the robots are available for six dof robots or for

the final six links of redundant robots.
3. Geometric models of the robots, payload, and obstacles are available.
4. Obstacles in the workspace are static.

5. Feasible and collision free start and goal joint configurations of the robots are

known, as are the start and goal positions of the payload.
6. Motion between the specified start and goal positions may be arbitrary.

7. The planner may ignore robot dynamics.

1.2.2 Goals

The goals of this work are to develop a planner capable of solving the cooper-

ating robot path planning problem while satisfying the following:

1. The planner shall locate reasonable collision-free paths in a time frame suitable

for off-line path planning.

2. The planner shall be capable of modifying a feasible path into a more efficient

one.
3. The planner shall be applicable to various robotic systems and various tasks.

4. The planner shall be practical for cooperating six dof manipulators as a min-

imum, and ideally for cooperating redundant robots.

5. The planner output shall be a sequential listing of closely spaced knot points
in joint space which represent the discretization of a continuous, feasible, and

obstacle avoiding path connecting the start and goal configurations.

1.2.3 Strategy

This thesis presents a new method for performing global path planning for
two cooperating spatial robots in a static environment. Like the single arm planner
presented by Dupont [5], the principle strategy is to minimize the computationally
expensive mapping of configuration space by performing mapping on an as required
basis. The planner satisfies the goals outlined in Subsection 1.2.2. The approach
is based around a novel, divide-and-conquer style heuristic for traversing through
c-space. This c-space traversal heuristic is directly applicable to the single robot path
planning problem and can be easily tailored to the case of two cooperating robots.
In all cases the dimensionality of the c-space considered is an accurate reflection of

the actual problem complexity. Computationally expensive precomputations and

-]

exhaustive c-space mappings are avoided. This thesis also presents a technique
which allows the path planning method to be applied to cooperating redundant
robots without requiring the use of inverse kinematics for a redundant robot. The
path planning method is applicable regardless of the number and type of joints in
the robot and for any number of obstacles in the workspace. A string tightening
algorithm is presented to modify any safe path found by the planner into a more
efficient one, where efficiency is measured by the length of the joint space trajectory.

The path planning method involves first attempting to traverse a c-space vector
from the start to the goal of one of the robots. If this vector passes through unsafe
space, the hyperspace orthogonal to and bisecting the unsafe segment of the vector is
systematically searched to identify an intermediate goal point for consideration as a
via point. An attempt is made to traverse from the last safe point to the intermediate
goal point. This process is repeated as necessary until the attempted traversal to
the newest intermediate goal point is entirely safe. At that point, progression is
attempted toward all previous guide points in the opposite order in which they were
found, where guide points include not only previous intermediate goal points but
also the safe points found on the goal end of each unsafe region which invoked a
search. When progression to a particular guide point is not entirely safe, that point
is permanently dismissed and progression is attempted toward the next guide point
in the specified sequence. The progression continues until an attempt has been made
to progress to the global goal point. If that attempted progression is not entirely
successful the overall process is repeated until the global goal point has been safely
traversed to.

Unfortunately, the path planning method presented herein is not complete,
i.e., it cannot guarantee finding a solution even if one exists. Though certainly
undesirable, this lack of completeness does not seem unreasonable since researchers

have thus far been unable to develop algorithms which achieve both completeness

and practicality for reasonably difficult yet practical path planning problems for
more than a few degrees of freedom. Since our emphasis was toward achieving a
potentially useful path planner for cooperating robots with at least six dof each, we
sacrificed completeness in exchange for the possibility of solving some practical yet
potentially difficult problems as quickly as possible.

Unlike some path planning techniques which are geometric model data struc-
ture specific, our planner may be used with any geometric modeling scheme which
allows for interference detection. Qur implementation utilizes polytope representa-
tions of the links of the robots and of the obstacles in the workspace as presented by
Schima [6]. The polytope scheme was chosen because it allows for detailed modeling
of objects while enabling relatively fast interference checking. The potential speed
of the collision detection is enhanced by the fact that the method simply needs a yes
or a no regarding collisions and does not require distance or direction information.
Mapping a particular point in c-space involves verifying that the closure constraint
can be met, updating polytope models of the robot links and payload, and perform-
ing two phase interference detection calculations on the resulting polytopes. The
first phase of interference detection simply checks for interference between spheres
which bound each polytope. If the spheres intersect indicating possible collision
then the second phase of interference detection must be invoked. The second phase

accurately determines whether or not two polytope models intersect.

1.2.4 Results

Despite its simplicity, the methodology presented herein appears to solve the
cooperating robot path planning problem better than other approaches presented
in the literature. The method is also applicable to the single robot path planning
problem. The approach does, however, suffer from one drawback currently afflicting

all practical motion planners which can handle six or more dof, namely that it may

fail to find a solution even if one exists. An upper bound on the complexity of the
planner is O(kn'-l) for an n dof problem, where k£ < n. For our implementation,
k = 3 for all cases except cooperating redundant manipulators for which £ = 2. This
compares favorably to the actual problem complexity which has an upper bound of
O(n™).

Sample results are included for a single six dof robot, a single nine dof robot,
cooperating six dof robots, and cooperating nine dof robots. The results illus-
trate the planner’s ability to solve practical yet potentially difficult problems. The
path planner was implemented in the C programming language and runs on a Sun
SparcStation 1. Paths found by the planner are animated using CimStation, a com-
mercially available computer graphics robot simulation package [7]. Typical time
required to find a feasible path for cooperating nine dof robots (the most complex
scenario considered) with several workspace obstacles is less than 30 minutes. After
finding a feasible path, the string tightening process for cooperating nine dof robots
typically requires about 15 minutes of computation. Parallel processing could be
used to significantly reduce execution times for both the path planning and string

tightening routines since both involve a large number of independent calculations.

1.3 Overview of Thesis

The remainder of this thesis is presented in seven main chapters:

Literature Review
¢ Problem Statement

¢ Divide-and-Conquer C-Space Traversal Heuristic

Utilizing the Heuristic for Robot Path Planning

Implementation and Results

10

e Discussion of the Path Planning Strategy
o Conclusions and Future Work

A literature review on published techniques for single and cooperating robot
path planning is discussed in Chapter 2. The path planning problem is formally
defined in Chapter 3. Chapters 4 and 5 present the central contribution of this thesis,
namely a new c-space traversal heuristic and means for utilizing the heuristic to solve
single and cooperating robot path planning problems. In Chapter 6, implementation
details and results are presented for application of the path planning strategy with
string tightening to four cases: a single six dof robot, a single nine dof robot, two
cooperating six dof robots, and two cooperating nine dof robots. A discussion of
the path planning strategy is given in Chapter 7. Finally, Chapter 8 presents some

conclusions and some areas for future work.

CHAPTER 2

Literature Review

This chapter presents a literature review on the subject of robot path planning. The

chapter is organized into the following main sections:
e Path Planning for Single Robots
e Path Planning for Cooperating Robots
e Other Related Areas of Research

e Summary of the Literature Review

While we are specifically interested in path planning for cooperating robots,
an understanding of current methods for a single robot is pertinent to determining
the possible suitability of extending those methods to consider cooperating robots.
Hence, the discussion below includes methods for both single robots, presented in
Section 2.1, as well as for cooperating robots, presented in Section 2.2. Other re-
lated areas of path planning research are briefly discussed in Section 2.3. Finally,
a brief summary of the literature review is presented in Section 2.4. A brief re-
view of literature regarding algorithms for string tightening is presented later in

Section 5.3.1.

2.1 Path Planning for Single Robots

Published approaches to the single robot path planning problem are discussed
in this section. Most of these approaches can be characterized as one of the following

three types:

e A graph search approach

11

e A potential fields approach

e A human assisted approach

These categorizations are not mutually exclusive, and a combination of them is often

used in a path planning strategy. These approaches are discussed below.

2.1.1 The Graph Search Approach

One approach to solving the path planning problem could be referred to as the
graph search type approach. Such an approach will work directly in the configuration
space (c-space) in attempt to find a connectivity graph of safe points between an
initial configuration and a goal configuration [5,8-33].

Configuration space as first suggested by Lozano-Perez and Wesley [33] refers
to the n-dimensional space formed by the n values of the joint variables of a robot
with n degrees of freedom (dof). Thus, each possible configuration which the robot
can assume is represented by a point in the configuration space. The robot path
planning problem is thus equivalent to the motion planning problem of a point in
c-space. The concept of c-space is illustrated in Figure 2.1. Consider the 2R planar
manipulator shown in Figure 2.1a. If it is assumed that each joint has both upper
and lower limits then the resulting c-space is rectangular as shown in Figure 2.1b.
If there were no joint limits the resulting c-space would be toroidal.

C-space can be divided into two regions: safe and unsafe. Safe space refers to
the locus of all points in configuration space which represent feasible and collision
free configurations. All space which is not safe for any reason is simply categorized
as unsafe space.

A path planning technique is considered complete if it can either guarantee
finding a solution if one exists or prove that one does not exist. Early efforts at
developing complete graph search techniques indicate that path planning in this

fashion is exponential in the number of degrees of freedom. For example, Reif [1]

13

Cartesian Space Configuration Spoce

ma x

8, 9, e *

joint ;

c |

min

min 81 max
Jjoint
1

Figure 2.1: A 2D Planar Robot and its Configuration Space

examined the 3D generalized mover’s problem. The mover’s problem (often referred
to as the piano mover’s problem) involves path planning for a single solid object.
The generalized mover’s problem involves path planning for an object which may
consist of multiple objects kinematically linked together (such as a robot arm). The
fact that Reif could show this generalized problem is PSPACE-hard is evidence
that the computational bounds for robot motion planning problems in fact grow
exponentially with degrees of freedom. An explanation of PSPACE-hardness may
be found in [34]. An upper bound on complexity of the robot path planning problem
is O(n™) for an n dof robot {2, 3].

Most graph search techniques utilize global world knowledge. In addition,
many use an A* type of heuristic search to find a feasible path. The A* algorithm is

a common search procedure whereby paths to the goal are built and compared based

14

on a heuristic estimate of the cost remaining to reach the goal. The algorithm con-
tinually expands the most promising path until a solution is found. Unfortunately,
searching for the optimal path has led most researchers to transform all obstacles
into c-space {9,17-19,21-25,28,30,31]. Because of the higher order complexity of such
a technique, the more successful works involved simplifications to reduce problem
dimensionality {12, 17, 18, 26]. The basic shortcoming of the A* type searches is the
fact that they tend to exhaustively map out concavities encountered in trying to go
between the start and the goal. A 2D example of this phenomenon is illustrated in
Figure 2.2. The likely computational expense of such an approach makes it imprac-
tical for motion planning for robots with more than a few dof. The A* algorithm
can also be applied bidirectionally by considering extending the path from both
the start and the goal positions. Bidirectional searching can be effective since it is

generally easier to move from a cluttered space to an open space than vice versa.

(al 4))

start goal

Figure 2.2: Exhaustive Mapping of Concavities Using A* Heuristic

Other complete techniques which are not computationally practical for higher
degrees of freedom are presented by Branicky [35], Canny [13], and Paden [36].
Kondo [37] has reported a fast and complete algorithm for six dof robots, but the
algorithm’s speed is only demonstrated for apparently simple problems.

Chen and Hwang [38] present a complete solution technique with performance

15

commensurate with task difficulty. Essentially, they use a global planner to select
regions of collision free space which connect the start and goal and then use a local
planner to solve the path planning problem within each region. The resolution of
the regions is only as fine as necessary to find a solution using a heuristic to select
promising regions for further subdivision. In this way, easy problems may be solved
relatively quickly and yet an extremely difficult problem may be resolved to whatever
level is required to obtain a solution or conclude one does not exist. Their algorithm
solves a relatively simple yet practical disassembly task for a five dof Adept robot
in three minutes on a 16 MIPS workstation.

Sharir [32] notes the mathematical complexity and size of the general com-
plete solution of robot motion planning in an n-dimensional c-space and presents a
graph search algorithm aimed at solving it. Sharir develops an algorithm which is
conceptually applicable to a system of arbitrary dimension. His algorithms can be
most easily described by considering the 2D problem of planning the movement of
a line segment in a planar space containing polygonal obstacles. The line segment
is free to translate but may not rotate. Sharir’s algorithm groups the 2D c-space
into closed polygonal regions which are homogeneous (completely safe or unsafe).
Then the problem of motion planning becomes that of searching for a connectivity
graph between the initial and final positions in the polygon which contains those
points. While this approach is interesting and successful in 2D, Sharir acknowledges
that both the breaking down of regions in configuration space and the graph search
suffer from higher order explosion; to the point of intractability.

The mathematical complexity of the general motion planning problem has
resulted in many techniques which reduce the problem dimensionality via sim-
plifications. Some such simplifications have included allowing only cartesian ma-
nipulators [24], requiring arm seperability (small wrists which orient a spherical

payload) (15,17,18,23,26,28,39-41], or allowing only certain motions and obstacle

16

types [12, 20, 26, 42]. None of these constraints can be used for path planning for
two cooperating robot arms.

Gupta [43] presents a sequential search strategy which plans the motion of
each robot link successively starting from the base. While not complete for robots
with three or more links, this technique is very efficient and may be useful for quickly
solving some simple problems.

One technique which has been used for path planning in c-space involves hy-
pothesizing a path and then testing it at a finite number of intermediate points for
collisions. The path is repeatedly modified heuristically until a solution is found.
Lewis [44] suggested precomputing commonly used path segments referred to as
freeways and recommended the use of intermediate safe points to avoid detected
collisions. However, he presented no mechanism by which to determine these inter-
mediate safe points.

Pieper [45] applied various cartesian heuristics to attempt to bypass obstacles.
The arm could fold to move in front of or above detected obstacles. Pieper found
that certain obstacle arrangements resulted in the manipulator oscillating between
obstacles. In addition, the algorithm generally failed if the only acceptable path led
between two obstacles.

Glavina [46] presents a heuristic path planning method which combines goal-
directed searches with randomized searches as needed. The algorithm proceeds
straight in c-space from start towards goal until an obstacle boundary is encountered.
At that point, the point slides along the obstacle boundary if and only if such motion
will reduce the distance to the goal. In 2D, sliding is attempted by searching for a
safe point along a line orthogonal to the desired direction passing through the first
point which violated an obstacle boundary. This concept is illustrated in Figure 2.3.
If this sliding alone is not sufficient to clear the obstacle, a new subgoal is created

at random and the process is repeated until a feasible path to the goal is found.

17

unsafe space

safe space

Figure 2.3: Goal Directed Sliding

Glavina has results for a 2D prototype and hopes to extend the procedure to a six
dof general purpose manipulator. For the six dof problem, Glavina proposes perhaps
checking 10 possible sliding directions corresponding to each direction of the basis
axes of the 5D hyperplane along which sliding can be attempted. Further research
is planned to determine if it is necessary to expand the set of test vectors beyond
this set.

Many papers have dealt with the motion planning of polygons or polyhedral
objects [8, 11. 13, 15, 18, 24, 47]. While this is the simplest form of the motion
planning problem, this research is useful for mobile robot path planning and forms
a foundation for planning problems of higher dimensionality. The actual methods
used, however, have generally not extended into higher dimensions easily due to the

added complexity of that space. Mobile robot path planning has been an attractive

18

research area because of the low dimensionality involved and because of the practical
applications of mobile robots [9, 21, 22].

Lozano-Perez and Wesley [26, 33] present a visibility graph (vgraph) technique
for polygonal and polyhedral objects. Vgraphs are graphs whose nodes are the
vertices of polyhedral c-space obstacles. Nodes which are visible to each other are
linked and assigned a weight proportional to the distance between them. The graph
is then searched for the optimal path. It is difficult to effectively apply vgraphs to
problems in more than two dimensions. For example, the vgraphs can be constructed
from the vertices of polyhedra, but the shortest path no longer lies in the visibility
graph.

Rovetta [48] presents a more recent variation on the vgraph method whereby
all obstacles which impede the traversal straight from start to goal are grouped
into a single monoobstacle consisting of the convex hull of the individual problem
obstacles. Such an approach reduces computation and produces more efficient paths
but it may convert a solvable problem into an unsolvable one.

Two other free space searching techniques include generalized cones [49] and
voronoi diagrams (8, 50, 51]. The first technique produces a safe path by piecing to-
gether the centerlines of generalized cones whose sides are the faces of the obstacles.
The generalized cone algorithm translates a polygonal moving body along the axes
of the generalized cones and rotates it at cone intersections. This algorithm may
fail when an object must translate and rotate simultaneously to avoid obstacles. A
voronoi diagram is a collection of surfaces that are equidistant from two or more
obstacles. A safe path is found by traversing appropriate regions of these surfaces.
These two techniques have the desirable feature of keeping the robot as far from
obstacles as possible. In a narrow corridor, this is a desirable feature. In cases
which much open space, however, it may yield a much longer path than necessary.

It is difficult to apply either of these techniques in more than 2D.

19

An interesting path planning technique is presented by Lumelsky [52-56]. He
makes three assumptions: (1) The arm endpoint can move through a simple curve,
(2) when the arm hits an obstacle, it can identify the contact point on the arm,
and (3) the robot can follow an obstacle boundary. While only local information
is used, Lumelsky’s algorithm is complete. He reduces planning a path for a robot
to planning a path for a point on the surface of some manifold. In two dimensions
he is able to apply his algorithm using the “same turn first” strategy for traversing
the surface of any obstacles encountered in the straight line path from start to goal.
His work has yet to be implemented for more than two degrees of freedom since,
in that case, there are an infinite number of possible directions to follow on the
obstacle boundary. To simplify this situation, Petroz and Sirota [57] suggest cutting
the obstacles in the higher dimensional c-space with planes to limit the boundary
following directions to right and left. The difficulties with this approach are that
an infinite number of such planes exist and that a solution will typically need to
employ more than one such plane.

Lozano-Perez and Wesley [24, 25, 33] describe an approach for motion plan-
ning which is based on the idea of expanding obstacles. This approach essentially
involves the expansion of the obstacles in such a manner as to reduce the path
planning problem for an n-dimensional shape to an equivalent problem for a sin-
gle point in that n-dimensional space, where it is the expansion of the obstacles
that allows the equivalence. Computational complexity becomes excessively bur-
densome for cases of dimensionality greater than two. Very little is known about
how to apply Lozano-Perez’s algorithm to systems with three or more degrees of
freedom, although Lozano-Perez has expanded the procedure to consider cartesian
manipulators (robots with three prismatic joints).

Warren [58] presents a vector based algorithm currently being developed for

planning the path of a robot among irregularly shaped obstacles. In this technique,

20

a c-space vector is created from the start position to the goal position. If this vector
crosses unsafe space, a second vector is used to determine a new intermediate goal
and the previous goal is stored for later use. This second vector is drawn from the
centroid of the obstacle though the midpoint of the unsafe potion of the initial vector
and continues until reaching a point in safe space. The overall procedure is applied
repeatedly until the ultimate goal can be reached. A 2D illustration of this approach

is shown in Figure 2.4. This technique has a divide-and-conquer flavor to it but has

safe space

centroid

unsafe space

Figure 2.4: Vector Based Divide-and-Conquer

drawbacks which limit its effectiveness to only a few dof. These drawbacks include
requiring exhaustive mapping of obstacles and having no guarantee of finding a safe
point along the vector from the centroid through the midpoint of the unsafe region.

A recent divide-and-conquer Lased approach is a heuristic approach for carte-
sian manipulators presented by Lee [59]. Lee divides the cartesian robot pick-and-
place task into a vertical departure motion, an intermediate planar motion, and a
vertical approach motion. The 2D vgraph algorithm is used to solve each phase of

the problem using heuristics to address part rotation about a vertical axis. This

21

approach cannot be practically applied to spatial manipulato: ath planning prob-
lems.

Dupont (5] addresses the path planning problem for kinematically redundant
manipulators. The basic philosophy employed by Dupont is that of performing se-
lective rather than exhaustive mapping of configuration space thereby minimizing
the exponential growth problems associated with complete graph search techniques.
The strategy which Dupont follows involves first creating a path which is linear in
joint space (c-space) between the start and goal positions. This path is discretized
and checked for collisions at each point along the path. Dupont attempts to traverse
around regions along the initial path where collisions occur by applying some heuris-
tics to choose a cartesian strategy direction that will likely allow circumvention of
the trouble regions. The Jacobian is then used to determine the possible safe c-space
moves that achieve the desired task space strategy directions. Octree representa-
tions are used to determine if collisions occur for a given configuration. Dupont’s
algorithm successfully planned obstacle avoiding paths for a seven dof redundant
manipulator.

A somewhat similar approach is taken by Kondo et al [60]. Although Kondo’s
intended application is the movement of parts and assemblies within CAD sys-
tem representations (this type of problem is often referred to as the piano mover’s
problem), the nature of that problem directly parallels the robot motion planning
problem. Kondo’s basic approach is similar to Dupont’s in that he tries to restrict
the amount of c-space referred to during a path search (by selectively mapping
c-space) in order to avoid executing unnecessary collision detections. Kondo uses
octrees and combines a global strategy with a local strategy. The global strategy
finds the limits of free space which are encountered in going from the start toward
the goal and from the goal toward the start. The local strategy then enumerates

only cells along the boundary of the free space which was encountered in attempting

22

to traverse directly between the start and goal positions. It is in this manner that
Kondo’s algorithm greatly reduces the typically burdensome amounts of computa-
tion and storage required to fully define an octree representation of the workspace.
In addition, by looking only from the start towards the goal (and vice versa) until a
collision occurs, Kondo is avoiding searching potentially large islands of safe space
which are unreachable. Using the piano mover’s analogy and trying to move the
piano from the hallway to the dining room, Kondo’s algorithm will avoid searching
the bedroom if there is no possible way the piano could have gotten into the bed-
room. Kondo applied his algorithm to determine a collision free path for moving a

heat exchanger between two positions in a CAD model of a nuclear power plant.

2.1.2 The Potential Fields Approach

An alternate type of approach is based on the use of artificial potential fields.
Such an approach typically regards obstacles as a source of repelling potential field,
while the desired goal position represents a strong attractor [61]. The hope is that
the moving body can safely traverse from its initial position to the desired goal
position simply by following the potential gradient of the resulting field. The square
of the inverse of distance to obstacles and the negative of the inverse of distance
to the goal are commonly used obstacle and goal potentials, respectively. The
potential fields approach is typically implemented in task space [62, 63] although
some researchers have examined implementing it in configuration space [64, 65].

Some advantages and disadvantages of potential fields approach are noted below.

2.1.2.1 Advantages of the Potential Fields Approach

1. They are faster than other algorithmic methods developed to date.

2. They are readily extended to systems of higher dimensionality.

23

3. They inherently tend to produce paths which avoid obstacles with significant

clearances.

2.1.2.2 Disadvantages of the Potential Fields Approach

1. They tend to have difficulty with local minima, particularly for systems of

higher dimensionality.

2. It is difficult to maintain a global nature since the strength of the attractors

and repellors generally is significant only over small distances.
3. They can have difficulty dealing with arbitrarily shaped obstacles.
4. Implementation in c-space requires knowledge of c-space obstacles.

5. The expression for the obstacle potential becomes cumbersome when there are

many concave objects.

6. They are not as thorough as graph search techniques.

T’

The solutions which are found are not generally not optimal.

8. They require robot to obstacle distance and direction information, a more
computationally expensive requirement than a simple yes or no regarding in-

terference.

9. They typically disallow motion very near or along obstacle surfaces, yet dock-
ing, parts mating, and other common tasks require navigation near or along

the boundary of the safe configuration space.

Hirukawa and Kitamura [66] claim to avoid the deadlocks at local minima by
forming a graph in cartesian space of the positions farthest from obstacles. The

end effector tries to follow this graph to the goal while the robot links are attracted

24

toward the lines of the graph. The formation of the graph involves global world
knowledge.

Some researchers’ efforts to address the local minima problem involve combin-
ing the potential fields planning approach with a higher level global planner [65,67-
70].

Warren [65, 71, 72| presents several techniques for global path planning using
potential fields. One approach is to first choose a trial path and then to modify that
path by the addition of intermediate points until it represents an acceptable solution.
The intermediate points are found using the potential function. By choosing the
trial path as a series of more closely spaced points than the entire global problem,
Warren greatly reduces (but does not eliminate) the possibility of being caught in
local extrema of the field. Another approach utilizes the penalty function simply to
modify the unsafe regions of a trajectory initially proposed by the planner. The
result is that the path is modified only where it intersects an obstacle thereby
reducing global sensitivity to the local minima problem. Warren illustrates his
techniques for several cases: a 2D revolute manipulator, a mobile robot capable of
translation only, and a mobile robot capable of translation and rotation.

Munger [70] takes an approach much like Warren’s described above in that he
divides the global problem into a series of shorter problems which go through some
number of safe intermediate points. The idea then is to solve a series of shorter prob-
lems which can be combined to yield a global solution. Munger applies his algorithm
to a nine degree of freedom manipulator assembling struts to form a tetrahedron.
The workcell for Munger’s application is relatively uncluttered. Applying this tech-
nique to general robot path planning problems is potentially troublesome due to
the difficulty in identifying the intermediate points appropriately so as to enable a

solution to be found.

25

Kim and Khosla [73] propose a different means to handle the local minima
problem. Their approach uses harmonic function based potential functions with the
property that they are free from local minima in a singularity free space. The panel
method, a tool from computational fluid mechanics, is used to solve the potential
flow problem. For point mobile robots this ensures well behaved potential functions
which can be solved quickly even with complex and concave obstacles. For nonpoint
robots the geometry introduces structural local minima which are positions where the
robot can no longer safely move along the potential’s gradient. Kim and Khosla have
applied this method to a bar shaped mobile robot and a 3 dof planar manipulator.
They note that it should be possible to extend their technique to 3D problems by
using 3D harmonic functions. Their work also illustrates that the local minima
problem still persists even with obstacles having simple shape.

Other means of addressing the local minima problem include generalized po-
tentials [74], a Laplacian approach [75], and a local minima free technique for gen-
eralized disc obstacles in a generalized sphere world [76].

Faverjon et al {77] address the problem of having the potential function dis-
courage paths near obstacles by basing the potential function on the object approach
velocity.

Barraquand and Latombe [78] present an algorithm which is geometrically
similar to Glavina’s (see Section 2.1.1). Barraquand combines potential functions
and graph search techniques to solve problems with a high number of dof. The
algorithm builds a graph connecting local minima of a potential function in c-space
and searches this graph for sequences which will produce a solution. Local minimum
are connected to each other using a Monte-Carlo randomized motion as needed to
escape the first local minimum followed by a gradient motion based on the potential
function. The local minima graph is searched depth first with random backtracking.

The algorithm is complete since, given due computation time, an exhaustive search

26

would eventually result. Barraquand presents results for a relatively simple problem
with a 31 dof manipulator which was solved in 15 minutes. The planner’s ability to
quickly solve more difficult but practical problems is not demonstrated in [78].
Lozano-Perez [79] present a task-level approach which involves both potential
fields and c-space graph search methods. Lozano-Perez solves the pick-and-place
problem by decomposing it into nearly independent, computationally feasible, sub-
problems. The two main subproblems are the grasp locations and approaches thereto
(at both the pick and place ends of the motion) and the gross translational motion
from the general locality of the pick location to the general locality of the place
location. A grasp position is determined by transforming the obstacles at the place
location to their equivalently limiting positions at the pick location and searching
the resulting c-space for a feasible grasp position. Having determined the grasp
points, Lozano-Perez uses a potential fields approach (and some trial and error) to
determine an arbitrary free approach/departure point in the vicinity of both the pick
and the place locations. The final phase of Lozano-Perez’s task planning is then to
plan the free motion plan between the departure point and the approach point. This
is done using c-space obstacle mapping and includes the assumptions that orienta-
tion may be neglected and that the first three robot joints invoke 3D translation.
Exhaustive mapping of the resulting 3D c-space is avoided by progressing in 2D

slices within that space until a solution is found.

2.1.3 The Human Assisted Approach

The mathematical complexity of a computed complete (even if suboptimal)
solution to the general motion problem apparently make it intractable for more than
a few degrees of freedom. Humans seem to possess some natural abilities to “see”

solutions to many motion planning problems for which computing a solution is still

difficult or excessively computationally intensive. It is precisely this apparent human

27

ability that the human assisted approach to path planning attempts to capitalize
on.

In its simplest form, human assisted path planning is accomplished on-line.
This usually involves moving the robot using a teach pendant and storing a series
of points along a collision-free path. The points can later be re-played in sequence
to execute the desired task.

More typically, the human assisted approach employs computer graphics mod-
els of the robot and its environment. The user can then perform the motion planning
in an off-line graphical manner. It is usually possible to display multiple views to
allow the user to detect any potential collisions. More advanced systems can au-
tomatically perform the collision checking. Systems which can compute estimated
task execution time can also allow the user to search for a very eflicient path. As
the number of times a particular task is to be repeated increases, the benefits of
obtaining a very efficient path become more pronounced.

Some systems presented in the literature which are suitable for the human
assisted approach to off-line path planning are presented by Derby [80], Hornick
and Ravini [81], Stobart {82], and Han [83)].

More recently, advances in telerobotics has produced systems in which people
may be employed as on-line path planners. Telerobotics, as described by Weis-

bin [84], includes three main paradigms of control:

1. Teleoperation, in which a human directly controls the remote device in real

time
2. Robotics - in which the remote device is preprogrammed

3. Supervisory Control - in which the human controller gives high level commands

which are decomposed and executed by the machine under human supervision.

Human assisted path planning would typically be involved in paradigm (1), whereas

28

autonomous path planning could be integrated into paradigm (3) to eliminate some

of the burden on the operator.

2.2 Path Planning for Cooperating Robots

While they are inherently similar, there are some key differences between mo-
tion planning for single manipulators and for cooperating robots. Some of these
differences are shown in Table 2.1. These differences are discussed later in Sec-

tion 4.1.

Single Robot Cooperating Robot

Path Planning Path Planning
Typically relatively large amounts || Closure constraint leads to compar-
of free space available. atively little free space.
Translations and rotations may End effector orientation important
often be decoupled. for maintenance of feasible

configurations.

Task space heuristics often Second robot makes effective use of
effective for path planning. task space heuristics very difficult.
C-space approaches inherently Configuration of second robot must
handle multiple arm configurations. || be considered explicitly.

Table 2.1: Single Robot vs Cooperating Robot Path Planning

In comparison to the single robot path planning problem, the cooperating
robot path planning problem has thus far received relatively little attention in the
research community. Perhaps this is because an efficient exact algorithm for single
robot planning is yet to be developed. Nonetheless, several researchers have specif-
ically considered the cooperating robot path planning problem. Their efforts are
summarized below.

Chien [85] presents a path planning technique for two cooperating planar

robots each having two links and three revolute joints. Chien’s solution process

ae

29

involves dividing the subspace into two 2D subspaces, one for each of the two pos-
sible configurations of the second robot given a specified configuration of the first.
These two subspaces are connected by transition configurations for which the con-
figuration in each of the two subspaces is the same. The "same turn first” strategy,
an algorithm which guarantees finding a solution if one exists, is used to search for
a sequence of moves within and between the two 2D subspaces which will connect
the start and goal configurations. While this technique is complete, its practicality
is apparently limited to planar robots.

Koga and Latombe [86] present a complete planning technique for cooperating
arms with only a few degrees of freedom. The technique is based upon systematic
searches of c-space grids. They present another planner which is not complete but
is practical for more dof. This technique uses randomized potential fields planning
techniques similar to Latombe’s prior single arm work [78] discussed in Section 2.1.2.
The technique has been implemented for redundant planar manipulators. Unlike
other research discussed herein, Koga and Latombe allow the the grasp positions
of the robots to be altered during a manipulation by temporarily halting motion
of the payload and repositioning an end effector. Thus far, their potential fields
planner requires some assumptions which significantly affect the planner’s reliability.
Difficulty was also experienced with more than a few obstacles.

An analytical technique for single robot path planning involves the use of kine-
matic constraints to pose the path planning problem as an analytical optimization
problem. Seereeram and Wen [87] present an example of such a technique by posing
the path planning problem as a finite time nonlinear control problem and solving
it using a Newton Raphson type algorithm. This approach represents the require-
ment of obstacle avoidance with a set of inequalities on the configuration variables.
Such approaches are still under development and may prove useful in the future for

solving practical problems for robots with many dof. Lim and Chyung [88] apply

30

a similar technique to the cooperating robot path planning problem by reformulat-
ing the problem as a non-linear optimization problem. Their methodology essen-
tially involves determining an admissible trajectory for the object being grasped,
where admissibility involves reachability by both robots. This method determines
a feasible path by employing optimization methods to modify the cartesian straight
line/constant rotation path of the object. Since the feasibility of an object path is
investigated at the joint level, the resulting solution is in joint space. No provisions
are made for collision detection or obstacle avoidance. Lim presents results for de-
termination of a simple trajectory for two cooperating five degree of freedom RHINO
robot arms. It is unclear whether Lim’s methodology would be applicable to more
difficult problems requiring obstacle avoidance and arm configuration changes.

Hu [89) presents an approach to control multiple cooperating redundant ma-
nipulators. While control rather than path planning is Hu's primary concern, the
approach allows use of the redundancy to avoid collisions between the robots and
obstacles while traversing a specified task space trajectory. Determination of a suit-
able task space trajectory for the payload would still require some type of higher
level path planner.

McCarthy and Bodduluri [90] examine the design and motion planning prob-
lem for closed kinematic chains such as cooperating robots. Their motion planning
algorithm utilizes selective mapping of c-space and involves subdividing c-space into
hypercubes until a safe path may be found by traversing edges of the hypercubes. A
2D depiction of this algorithm is given in Figure 2.5. Figure 2.5a shows a bounded
2D space, some circular obstacles, and prescribed start and goal points (S and G,
respectively). The space is subdivided at the start point (Figure 2.5b), and fur-
ther subdivided at the goal point (Figure 2.5¢). Finally, all non-empty regions with
reachable vertices are subdivided until a solution is found (Figure 2.5d). This type

of approach is referred to as cell decomposition. McCarthy and Bodduluri solve

31

¢)

/

Figure 2.5: Hypercube Subdivision Algorithm

the cooperating Puma problem for several cases for which maintaining closure and
avoiding collisions between the robots appear to be the main concerns. The closure
constraint utilized is simplified by modeling each puma as a 3R-1S robot and then
requiring a constant length between the S joints of each robot.

Chen and Duffy [91] also present a path planner for two cooperative Puma
robots. Their approach is to find a feasible position for the first three links of one
of the robots along a discretized path from start to goal. For each point along this
discretized path the possible closure configurations (cones) are investigated to find
a feasible and collision free configuration for the second robot. Because of some
simplifications and assumptions it does not appear as though their approach would
be successful for problems much more difficult than the relatively simple example

illustrated in [91].

2.3 Other Related Areas of Research

Other related areas of path planning research which will not be discussed in

depth in this thesis include:

e Mobile robot path planning
e Coordination of multiple robots
e Piano Mover’s problem

e Nonholonomic motion planning

These areas of research are briefly discussed below.

2.3.1 Mobile Robot Path Planning

While all robot path planning problems have inherent similarities, mobile
robot path planning differs in many ways from path planning for general manip-
ulators. Some of the key differences as identified by McKerrow [92] are summarized
in Table 2.2. These differences result in path planning for manipulators being more
complex than path planning for mobile robots. The path planning problem for a
2D mobile robot in the presence of known stationary obstacles has many real-time
optimal (minimum time or minimum distance) solutions. Many researchers of the
mobile robot path planning problem have also considered dynamic obstacles and/or
unknown environments. Such results are made possible by the limited dimensional-
ity of the mobile robot path planning problem. Since we are concerned with path
planning for manipulators, no detailed discussions will be given to path planning
techniques suitable only for mobile robots. Areas where the algorithms used to
solve mobile robot path planning problems may impact the general manipulator

path planning problem have been included in earlier discussion.

Mobile Robot
Path Planning

Manipulator
Path Planning

Movement restricted to 3D.

End effector may move in 6D.

Whole robot moves from start to
goal.

End effector and payload move from
start to goal.

Robot typically occupies a fixed
volume.

Volume occupied by robot changes
as joints move.

Model of environment typically
incomplete.

Exact location and description of
objects in the workspace are
typically known.

Dead-reckoning control of a mobile
robot is subject to significant errors

Typically assume high accuracy
and repeatability of joint motions.

33

which accumulate

Table 2.2: Mobile Robot vs Manipulator Path Planning

2.3.2 Coordination of Multiple Robots

Coordination of robots is typically done assuming the individual paths of the
robots are known with the timing to be determined so as to avoid collisions. Research
into the coordination of multiple robots will not be discussed herein since it does
not appear that cooperating robot path planning research will benefit directly from

it at this time.

2.3.3 Piano Mover’s Problem

As mentioned earlier, the nature of the robot path planning problem is very
similar to the piano mover’s problem. The piano mover’s problem involves planning
a collision free path between two poses for a single, rigid object amongst obstacles.
Because of the inherent similarities between manipulator path planning and the
piano mover’s problem, many algorithms such as vgraphs, voronoi diagrams, and
graph search methods may be applied to either. Earlier discussions include such
algorithms. There are also a number algorithms which are specific to a particu-

lar subset of mover’s problems and are not applicable to the robot path planning

34

problem.

A recent survey of the status of motion planning research including the mover's
problem is provided by Hwang et al [93]. Hwang suggests that, as a result of problem
complexity, future research should concentrate on heuristic algorithms that run in
a few seconds at the expense of failing to find a solution to very hard, pathological,

puzzle-like problems.

2.3.4 Nonholonomic Motion Planning

The complexity of a certain class of motion planning problems is compounded
by nonholonomic constraints. Nonholonomic constraints are constraints on the
derivatives of configuration variables which cannot be integrated. For example, a
unicycle may maneuver to achieve any position and orientation, but its direction of
motion at any one instant is constrained. Path planning for single and cooperating
robots is holonomic. The nonholonomic problem is much more difficult and efforts
for developing implementable algorithms are just beginning. A review of the current

status of motion planning with nonholonomic constraints may be found in [93].

2.4 Summary of the Literature Review

This section presents a summary of the above literature review. The summary

1s presented in four sections:
e Difficulties with Complete Solutions
e Practical Incomplete Solutions
e Potential Fields Solutions

e Cooperating Robots

35

2.4.1 Difficulties With Complete Solutions

Many complete algorithms have been developed for solving the motion plan-
ning problem. However, it appears as though the mathematical complexity of such
techniques renders them computationally intractable when applied to a reasonably
difficult robot motion planning with six or more dof. A general, practical, and
complete solution to the motion planning problem has not yet been developed.

There are a number of complete approaches which attempt to achieve solution
time commensurate with problem difficulty. The computational practicality of these
techniques for reasonably difficult yet practical path planning problems remains to

be demonstrated.

2.4.2 Practical Incomplete Solutions

As a result of problem complexity, practical techniques used to solve the single
robot motion planning problem for six or more dof involve some heuristics or sim-

plifying assumptions and lack completeness. Some typical simplifications include:
e Simplified models of the robots and obstacles
e Decoupling of rotations from translations
o Compact wrists and payloads
¢ Restrictions on allowable motions and allowable obstacles

These simplifications and heuristics are typically robot and/or task specific and
would not be expected to perform well in more general cases or for two robots
working cooperatively due to the differences presented earlier.

The speed and success of the most useful algorithms can be attributed to their
pruning of the search space by reducing problem dimensionality or by their ability

to selectively map c-space thereby avoiding intractable exhaustive mappings.

36

2.4.3 Potential Fields Solutions

The potential fields approach to single arm path planning constitutes an effec-
tive way to combine the constraints resulting from several obstacles for many simple
cases, but the fact that motion planning using potential fields is based solely on local
information has led to some difficulty in achieving effective high level planning. The
most effective potentials fields approaches determine a sequence of intermediate via

points between which there are no local minima.

2.4.4 Cooperating Robots

Of the work which has been published for path planning of cooperating robots,
much of it is limited in effectiveness to planar systems. The researchers who have
addressed cooperating robots with six or more degrees of freedom have apparently
been successful only in solving problems which appear to be relatively simple.

Research pertaining to path planning for cooperating robots utilizing potential
fields appears to be still in its early stages. Results so far have been limited to

redundant planar systems with only a few obstacles.

CHAPTER 3
Statement of the Problem

This chapter presents a formal definition of the robot path planning problems being
addressed by this thesis. Some general background information is given in Sec-
tion 3.1. Sections 3.2 and 3.3 discuss assumptions and goals, respectively. Formal
definitions of the single and cooperating robot path planning problems are given in

Sections 3.4 and 3.5, respectively.

3.1 Background

A robot can be described by its forward kinematic equation
T} = f(©) (3.1

where T6n € R™ represents the task space transformation (position and/or orien-
tation) of the end effector and @ = (6}....,0n) € R"™ represents the robot’s joint
configuration, where n is the number of degrees of freedom (dof). For spatial robots
with three translational and three rotational dof, m = 6.

A robot’s inverse kinematic equation
© = f(Tf") (3.2)

identifies joint configurations ® which would result in a specified task space trans-
formation Tgl. For a non-redundant robot capable of achieving any desired position
with any desired orientation (within workspace limits), n = m, and Equation 3.2
will possess only a finite number of solutions © for a given T6n. For redundant
robots n > m and equation 3.2 is underdetermined, indicating that an infinite num-
ber of robot configurations © exist which produce the end effector transformation

T6n. The problem of solving Equation 3.2 for a redundant robot is referred to as the

37

38

redundancy resolution problem. A robot with n < m has fewer dof than required to
arbitrarily position and orient its end effector in the workspace. The inverse kine-
matic equation for such a robot is overdetermined, i.e., it will have solutions only

for transformations which lie in the limited workspace of the robot.

3.2 Assumptions

This section restates the assumptions presented in Subsection 1.2.1 and pro-

vides a discussion regarding each assumption.
Assumption 1 Forward kinematic models of the robots are available.

Discussion: A robot may be represented using the Denavit-Hartenberg con-
vention from which the forward kinematic model (Equation 3.1) can be easily de-

rived [94].

Assumption 2 Closed-form inverse kinematic models of the robots are available

for siz dof robots or for the final siz links of redundant robots.

Discussion: This thesis addressed full spatial robots for whichn > m = 6 (see
Section 3.1). Most commercial six dof robots satisfy one of the following sufficient

conditions which enables a closed-form inverse kinematic solution [94]:

1. Three adjacent joint axis intersect.

2. Three adjacent joint axis are parallel to one another.

Unimation Puma manipulators, which will be used in the case studies for this thesis,
satisfy the first condition. In general, multiple solutions will exist representing
various possible robot configurations. For redundant robots, it is assumed that the
final six links can be treated as a single six dof robot for which a closed-form inverse
kinematic model is available. The usefulness of this assumption regarding redundant

manipulators will become evident later in this thesis.

39

The path planning strategy in this thesis does not require inverse kinematics

for single robot path planning problems.

Assumption 3 Geometric models of the robots, payload, and obstacles are avail-

able.

Discussion: Robots and their environment may be represented by some form
of geometric model. Some typical forms of geometric modeling include boundary
representations (b-reps), constructive solid geometry (csg), and polytope represen-
tations. The geometric model will contain knowledge of the geometry, position, and
orientation of the robot links, the payload, and each obstacle in the workcell. The
only constraint regarding geometric modeling is that a facility for performing colli-
sion detection is required. Neither the source of this geometric information nor the
data structure format of the geometric model is important from the perspective of
the path planner. For static obstacle path planning purposes, the geometric model
need only consist of a geometric description of the robots, payload, and objects in

the environment.
Assumption 4 Obstacles in the workspace are static.

Discussion: The added complexity of a dynamic environment make it unlikely
that a practical planner for cooperating multi-dof robots with dynamic obstacles will

be developed anytime soon.

Assumption 5 Feasible and collision free start and goal joint configurations of the

robots are known, as are the start and goal positions of the payload.

Discussion: There are several key consequences of this assumption. First,
note that the grasp positions are inherently defined by this assumption. The deter-

mination of suitable grasp positions is highly task specific, potentially very difficult,

40

and beyond the scope of this thesis. Secondly, note that specifying the start and
goal joint configurations as opposed to the start and goal task space configurations
eliminates the need for the path planner to choose particular solutions to the inverse
kinematics at the start and goal positions. It is reasonable to assume that the start
joint configurations are known since some single arm planning must have been done
to position the robots at their initial positions. Requiring that the goal joint con-
figurations be known is more demanding than simply specifying a task space goal
for the payload. Typically even non-redundant robots would have several possible
configurations (such as elbow up or elbow down) which satisfy a particular task
space goal. The solvability of the path planning problem can depend upon which
joint configuration is specified as the goal. An example where the choice of goal joint
configurations determines the solvability of a path planning problem is illustrated

in Figure 3.1. Figure 3.1a shows the start position for two cooperating 3R planar

(@) (b) (c>

start achievable goal unachievable goal

Figure 3.1: Choice of Goal Joint Angles May Affect Solvability

robots. Figure 3.1b shows a choice of goal joint configurations which result in a
solvable problem for the case illustrated. As shown in Figure 3.1c, a different choice

of goal joint configurations which produce the same task space goal can result in an

41

unsolvable problem. In the case of redundant robots some form of redundancy res-
olution is required to specify the goal joint angles. Redundant robots will typically
possess one or several regions in c-space which yield a desired task space goal.

It is a clear disadvantage to require the goal joint configurations be specified
at the outset of the problem since this information must come from some higher
level source and may directly determine the existence of a solution. However, a few

incidental advantages arise from the extra knowledge required by Assumption 5:

e Path cyclicity concerns are eliminated. A path planner will often be required
to execute a task which is repetitive in task space. Path planners which do not
specify the start and goal joint angles for a particular path planning problem
often suffer from path cyvclicity problems whereby the robot does not achieve

the same configuration on subsequent repetitions of identical task space tasks.

e Path planning problems may be attacked either from start to goal or vice
versa. The ability to attempt to solve a path planning problem from either
direction (or even from both directions simultaneously) may prove to be ben-
eficial if the algorithm or heuristic being used happens to be more successful
in one direction than in the other for a particular path planning problem. For
example, planning a path to remove a peg from a hole would intuitively seem
much simpler than planning a path to put the peg in the hole. The 2-D prob-
lem illustrated earlier in Figure 2.2 is one which would have proven easier to
solve backwards if using an A* graph search approach. As discussed earlier in

Section 2.1.1, the ability to search bidirectionally is often valuable.

o A preferred goal robot configuration may be achieved. In some cases it may
be desirable to supply the path planner with a specified goal robot configu-
ration rather than allowing the path planner to choose any which satisfy the

goal position/orientation in task space. For example, a reliability analysis or

42

robot flexibility analysis might be used to prescribe a preferred goal robot

configuration.

QOur need for Assumption 5 stems from the fact the our approach is configu-
ration space based. This will become clear as our solution technique is presented

later in this thesis.

Assumption 6 Motion between the specified start and goal positions may be arbi-

lrary.

Discussion: This assumption illustrates that interest is solely to move from
start to goal without restriction on the path. This is the most general form of the
path planning problem and is acceptable for solving the vast majority of problems.
As an example of a task for which this assumption would not be valid, consider
two robots cooperatively manipulating a trough of water. Clearly such a task would
impose a constraint on the motion between the start and goal positions such that the
trough would remain level so as not to spill the water. Another example requiring
restricted motion involves contact between the robot/payload and its environment.
Although such cases are not considered herein, some discussion of how they might
be addressed is presented later in Section 5.4.

In cases where a specific task space path must be followed the problem becomes
one of configuration selection or redundancy resolution rather than a classical path
planning problem. For example, a nine dof robot performing arc welding along a
specified task space path is not a nine dimensional path planning problem but rather

a much simpler three dimensional redundancy resolution problem.
Assumption 7 The planner may ignore robot dynamics.

Discussion: This assumption is valid when considering only static obsta-

cles and since a time optimal trajectory is not sought. Algorithms which consider

43

dynamics typically assume that an initial path is given and dynamic optimization
is done locally along the path [95]. Under dynamic optimization, path curvature

becomes an important characteristic.

3.3 Goals

This subsection restates and discusses the goals presented in Subsection 1.2.2.

Goal 1 The planner shall locate reasonable collision-free paths in a time frame suit-

able for off-line path planning.

Discussion: It appears as though the search for an optimal path and/or a
real time solution for non-trivial path planning problems with more than a few dof

will remain computationally intractable for some time to come (See Chapter 2).

Goal 2 The planner shall be capable of modifying a feasible path into a more effi-

cient one.

Discussion: It is typically possible to modify a suboptimal path found by a

path planner to produce a smoother, more efficient path.
Goal 3 The planner shall be applicable to various robotic systems and various tasks.

Discussion: Some path planning techniques perform well only with specific
types of robots or for certain types of tasks due to their use of simplified, case specific
assumptions or heuristics. We would like our solution technique to remain free of

any assumptions which would limit its use as a general-purpose path planner.

44

Goal 4 The planner shall be practical for cooperating siz dof manipulators as a

minimum, and ideally for cooperating redundant robots.

Discussion: It should be noted that the practicality of a path planning tech-
nique for a robot with six or more dof is important since at least six dof are required
to arbitrarily position and orient an end effector. Many of the path planning tech-

niques discussed in Chapter 2 are not practical for robots with six or more dof.

Goal 5 The planner output shall be a sequential listing of closely spaced knot points
in joint space which represent the discretization of a continuous, feasible, and ob-

stacle avoiding path connecting the start and goal configurations.

Discussion: This goal is consistent with integrating a path planner into the
CIRSSE testbed system using a traditional three-step decomposition of the move
robot problem. The three steps are path planning, trajectory generation, and motion
control. A trajectory generator may be used on the output of the path planner to
provide timing information consistent with the dynamic constraints of the system.
The knot points determined by the path planner shall be spaced closely enough
that the trajectory generator need not be concerned with maintaining the closure
requirement between knot points. Execution of the time parameterized trajectory
may be carried out by a motion control system. Some fine compliance will typically
be required due to inaccuracies in the robot model or tracking errors at the control
level. Such compliance could be either passive, such as a compliant end effector, or
active, such as compliance based on force/torque feedback. Details of the trajectory
generation and motion control steps are separate areas of research which are beyond

the scope of this thesis.

45

3.4 Single Robot Path Planning Problem Statement

Per the background and assumptions stated above, the single robot path plan-
ning problem may be formally defined as follows:

Given:
1. A single robot described by its forward kinematic equation, Equation 3.1.
2. Geometric models of the robot, the payload, and workspace obstacles.
3. Start and goal joint configurations of @5 and @g, respectively.

Determine:
A closely spaced sequence of k joint space knot points (©1,... , @), where
©) = ©;5 and © = @g, which represent a discretization of a feasible and collision

free c-space path connecting @5 and @y.

3.5 Cooperating Robot Path Planning Problem Statement

Per the background and assumptions stated above, the cooperating robot path
planning problem for two cooperating spatial robots, referred to as robots 1 and 2,
may be formally defined as follows:

Given:
1. Two robots work cooperatively satisfying the closure constraint:

T1§T77 = T2} (3.3)

—D

where T,’:i‘) is an invariant transformation relating the relative positions of the

robot end effectors as they grasp a common, rigid object.

2. The robots are described by forward kinematic equations:

Tid = £(©i) ,i=12 (3.4)

46

where ©i = (87, .. .,Hinz-) represents robot t’s joint configuration, n; > 6 is

the number of degrees of freedom (dof) of robot <.

3. The robots are described by inverse kinematic equations with at most one

solution:
@i = f(Ti§,©1.Ci;) ,i=12 (3.5)
1

where ®1' = (811, .. ,Hini_s), and Ciji represents one of j; possible robot

configurations for robot i, and j; is finite and known.
4. Geometric models of the robots, the payload, and workspace obstacles.
5. Start and goal joint configurations of @is and ®ig, respectively, wherez =1, 2.

Determine:

A closely spaced sequence of k paired joint space knot points
((011,02]),...,(©1;,02,)), where ©i; = Ois and Oiy. = ®ig, which represent
a discretization of a feasible, continuous, and collision free path connecting
(@1s, ©@25) and (@©1g, O@24). Each paired knot point (G)lj,@2j) shall satisfy the
closure constraint, Equation 3.3. Also, the discretization shall be sufficiently fine
so that a trajectory planner may ignore the nonlinearities of the closure constraint

between knot points.

CHAPTER 4

Divide-and-Conquer C-Space Traversal Heuristic

This chapter presents the configuration space traversal heuristic which is the heart
of the path planning strategy presented in this thesis. This chapter merely presents
the heuristic. The utilization of the heuristic is discussed in subsequent chapters.

This chapter is organized into eight main sections:
e Motivation for a New Approach
e Conceptual Description of Heuristic

e Vector Description of Heuristic

Computing Search Directions

Prioritizing Search Directions

Comparison of the Heuristic to the Literature

Section 4.1 discusses the motivation for a new path planning technique for
cooperating robots. Sections 4.2 and 4.3 present conceptual and vector descriptions
of the c-space traversal heuristic, respectively. Computation and prioritization of
search directions used by the heuristic are discussed in Sections 4.4 and 4.5, respec-
tively. Finally, a comparison of the heuristic to published path planning algorithms

and heuristics is presented in Section 4.6.

4.1 Motivation for a New Approach

This section attempts to make a case that there is sufficient motivation for this
new research in the area of path planning for cooperating robots. First, recall from

Section 2.2 that path planning approaches in the literature for cooperating robots

47

48

are generally limited with regard either to the number of degrees of freedom (dof)
of the robots or to the apparent difficulty of problems which they are capable of
solving. Thus, there appears to be sufficient motivation for this research.

Due to the fact that researchers’ interest in cooperating robotic systems is
relatively young compared to the much longer history of interest in single robots,
thorough consideration should be given to the application of methods developed
for single robot path planning when searching for a solution to the cooperating
robot path planning problem. There are, however, some unique elements to the
general cooperating robot path planning problem that make it unlikely that any
of the single arm path planning methodologies discussed in Chapter 2 could be
successfully applied to cooperating robots without significant modifications. These
differences were presented earlier in Table 2.1. Some of these special elements of the
cooperating arm problem and the way in which they impact the solution process
are discussed in this section.

Consider, for instance, two cooperating six degree of freedom manipulators.
The effective number of degrees of freedom for the closed kinematic chain is six
(from Equation 1.1). Hence, the problem is essentially six dimensional (almost as
if it were a single arm problem) but possesses the added closure constraint. This
restriction does not affect the dimensionality of the space in which a graph search
algorithm must perform, but does affect the validity of some of the assumptions
typically used to reduce the system to one of a lower dimensionality. For example,
a common assumption for single arm planning is to neglect orientation for large,
gross moves through space. This assumption would not likely prove effective for two
cooperating robots since the orientation of the load will usually be crucial to the
maintenance of configurations reachable by both robots.

The added difficulty induced by the closure constraint would also make it

extremely difficult to implement a planner based on task space heuristics. One

49

of the difficulties with task space based heuristics for single robot path planning
problems is that they often produce collisions with one obstacle while trying to
avoid another. Such difficulties could only be more severe for a closed kinematic
chain such as results during robotic cooperation. An additional difficulty which
would be magnified by the reduction in free space during cooperation is the fact
that the avoidance strategy suggested by a task space heuristic may not always be
feasible to achieve.

Although the potential fields method should, in theory, be applicable to the
cooperating robot motion planning problem, much difficulty in achieving a reliable
implementation would be anticipated. Much thought would be required to attempt
to develop potential field functions that would be well behaved for the closed kine-
matic chain which results during cooperation. Also, the practice of selecting a grid
of trial points and perturbing them or rerouting the path through a different set
of via points would be significantly more difficult for cooperating robots than for a
single robot. The basis for the preceding statement is that a far more restricted safe
space results for cooperating arms. As a result, the practice of determining safe trial
points more closely spaced than the overall global problem would be more difficult.
Also, there would be increased likelihood that some intermediate trial points would
lie in unreachable regions of safe space. Results in the literature seem to support
the premise that achieving a practical and reliable potential fields based planner for
cooperating robots would be difficult (see Section 2.2).

The human assisted approaches still maintain their advantage of capitalizing
on the natural ability of humans to solve complicated geometric problems. In fact
it is the human assisted approach by which most non-trivial collision free robot
motion planning is currently accomplished. However, the level of insight which the

user would be required to supply would clearly be much greater for two cooperating

50

arms than for a single arm. This increase in difficulty may make an already poten-
tially undesirable task for a human prohibitively tedious, frustrating, and difficult.
In addition, while the human assisted approach offers the best chance for nearly im-
mediate results, it is contrary to our longer term goals of creating more autonomous
robotic systems capable of complete task planning and execution from a task level
command.

The path planning procedure being presented herein is of the graph search
type and, in a fashion similar to Dupont’s approach to path planning for a single
redundant manipulator (see Section 2.1.1), the procedure involves selective mapping
of c-space on an as needed basis to reduce computational burden. Because of the
added difficulty of the cooperating arm problem, an improved heuristic was sought
to guide the mapping of c-space in a manner directed towards finding a solution with
a minimal amount of mapping. This resulted in the development of the “divide-and-

conquer” c-space traversal heuristic presented below.

4.2 Conceptual Description of Heuristic

In this section, a novel “divide-and-conquer” style heuristic is presented for
traversing an n-dimensional space consisting of safe and unsafe regions. For pur-
poses of robot path planning, the space to be traversed is c-space. The heuristic
is general in nature and, while our intended application is to solve the robot path
planning problem, this technique could be used to attempt to traverse any space
consisting of regions of safe and of unsafe points. An example of another possi-
ble application is the “piano movers’ problem.” Because of the impracticality of
mapping the space exhaustively for dimensionality greater than perhaps three, the
heuristic was formulated to be compatible with selective mapping of c-space with no

computationally expensive precomputations. The c-space traversal heuristic is the

51

"backbone” of the path planning technique being presented in this thesis. Discus-
sion of the application of the c-space traversal heuristic to the robot path planning
problem is deferred until the next Chapter.

This section describes the heuristic conceptually using several simple 2D and
one 3D illustrative examples. A vector description of the heuristic is given in Sec-
tion 4.3. Although the pictorial examples herein are mainly 2D for simplicity of
illustration, the approach suffers no loss of generality regardless of problem dimen-
sionality (although the complexity of the searches increases with problem dimension-
ality). The vector description presented later is applicable to a space of arbitrary
dimension.

To illustrate the heuristic, consider the 2D path planning problem illustrated
in Figure 4.1a, where ®5 and ©y are the start and goal positions, respectively. The

following note is important:

In this example and subsequent examples herein the boundary of the
unsafe c-space is defined in the figure as though the c-space obstacle has
been mapped out. This is not the case, but the entire unsafe region is

shown a priori to provide better understanding of the subsequent steps.

First, the n-dimensional direction vector from the start point to the goal point is
calculated and an attempt is made to traverse along that vector until the first unsafe
point is found. This involves discretizing the path from the start to the goal and
mapping each successive step along that path until the first unsafe point is found.
In the example, the progression from @j is safe through point @4 (Figure 4.1b).
Points safely mapped are indicated by the solid circles in the Figure.

Next, the progression along the straight line path from start to goal is contin-
ued through the unsafe region until the first safe point is found. In the example,
this first safe point is labeled ©y in Figure 4.1b. Unsafe points mapped in this

process are indicated by the open circles. Although in this example @, lies in the

52

L]
Y% search
8s safe space directions

Figure 4.1: 2D Example of C-Space Traversal Heuristic

same connected region of safe space as the start and the goal points, this will not
be true in general. Next, the intent is to find a safe point in the n—1 dimensional
space orthogonal to and bisecting the vector between the last safe point (®@g in the
example) and the first safe point on the other side of the homogeneously unsafe
region (@ in the example). It is apparent that such a safe point must exist if the
problem at hand is solvable. In this example, this reduces to searching the 1D line
shown in Figure 4.1c. The search methodology depends upon whether this 1s an

initial search or a subsequent search:

e For an initial search, the search space is effectively searched for the safe point
nearest to the midpoint of the unsafe line segment which was mapped previ-
ously. This is done by radiating out equal amounts in all search directions

until a safe point is found.

33

e For a subsequent search, the search directions are prioritized and searched non-
uniformly per the methodology discussed in Section 4.3. In 2D, a prioritized
search would first search in the search direction which has a component in the
direction of the previously successful search direction. If no safe point can be

found in that direction, the opposite direction is searched.

Since this is the initial search in the example, the line is searched discretely and
in both directions equally from the midpoint until safe point @c¢ is found (see Fig-
ure 4.1d). Next, an attempt is made to traverse to the safe point from the last
safe point initially found in trying to go directly from the start to the goal (that
point being @g in the example). The following steps depend upon the result of that

attempted traversal, as detailed by the following two cases:

Case 1: The Traversal to the New Safe Point is Entirely Safe

In this case it is attempted to traverse to any previously determined guide
points, where guide points are previously determined safe points such as those found
at the other side of the homogeneously unsafe region or intermediate goal points
found in any prior searches. The sequence for considering the guide points is the
opposite of the order in which they were found with the global goal point to be
considered as a final guide point. When progression to a particular guide point
1s not entirely safe, that guide point is permanently dismissed and progression is
attempted toward the next guide point in the specified sequence. It is in this manner
that productive use may be made of safe points which could be in unreachable regions
of safe space. As a result, intermediate guide points may or may not be part of the
final path. The attempted progressions continue until an attempt has been made
to progress to the global goal point. If progression can be made to the global goal
point the entire path planning problem has been solved. Otherwise, the last safe
point progressed to becomes the new start point and the entire heuristic is repeated

until the global goal point has been safely progressed to.

54

Note that only points which have been safely progressed to from the start
point are mandatorily included as part of the final path but those which may be in
unreachable regions are used to help guide the overall process. All points actually
comprising part of the path will, of course, be in the same connected region of safe
space as the start point.

The 2D example of Figure 4.1 invoked this case since the attempt to traverse
from @q4 to O can be seen to be successful (Figure 4.1e), after which progression is
made to guide points @ and ®¢ thereby completing this simple 2D path planning
problem with the resulting path shown in Figure 4.1e. The c-space points which
required mapping during the process are shown in Figure 4.1f. Note how relatively

few points were mapped by this technique.

Case 2: The Traversal to the New Safe Point is Not Entirely Safe
In this case the heuristic is recursively applied taking the last point safely
progressed to as the start point and the safe point found in the last search as the

goal point.

4.2.1 More 2D Examples

Another 2D illustration of the heuristic is given in Figure 4.2. The solution
sequence in this example is similar to that in the previous example except in this case,
following the safe traversal to the safe point ©, no progression can be made toward
©;. Thus © is disregarded, progression is attempted toward the second guide point
©g resulting in the solution shown in Figure 4.2e. Note that the disregarded point
did not necessarily have to lie in the same region of safe space as the start and goal
positions (although it did in this example).

An example of a 2D task which would result in a c-space having an unreachable
safe region is shown in Figure 4.3. A 2D illustration of the c-space traversal heuristic

for a problem with two disjoint regions of safe space is illustrated in Figure 4.4. This

39

(=)
*
. L)
% search |
6s safe space directions \
M
° []
Q [J
points °, o°
mapped e o
. : ° *
. 4, ot
[] * * b

Figure 4.2: Example Which Dismisses an Intermediate Point

illustration also demonstrates the inherent reversal nature of the heuristic when
a joint limit problem is encountered (the second search hits a Joint limit in the
preferred direction after which reversal occurs). This example also illustrates the

heuristic for a problem requiring multiple searches.

4.2.2 A 3D example

An example of the c-space traversal heuristic applied to a 3D problem is il-
lustrated in Figure 4.5. In the 3D case, the search space is 2D (planar). For this
example eight evenly distributed search directions were considered with the search

directions prioritized into two groups (prioritization is discussed below).

4.2.3 Philosophy Behind the Heuristic

The basic idea behind the “divide-and-conquer” c-space traversal heuristic is

that better local decisions at the beginning of the trouble region may be made if a

56

() 7 n (o) (c> m
=

start unreachable position goal

Figure 4.3: Scenario Which Would Result in Non-Disjoint C-Space

possible way around the “center” of the trouble region is known. Thus, rather than
attempting paths which look promising locally (at the beginning of a trouble region)
but which may not yield overall results, the heuristic attempts local strategies that
appear to have a possible overall solution around the trouble region. A comparison

of how this heuristic relates to the literature is given later in Section 4.6.

37

safe space o
*

Figure 4.4: Example with Non-Disjoint Safe Space and Multiple Searches

*

start

Figure 4.5: 3D Example of C-Space Traversal Heuristic

58

4.3 Vector Description of Heuristic

Given ©s and @yg, the start and goal positions in n-dimensional space, re-
spectively, the heuristic may be described in vector notation by the following ten

step procedure:
Step 1

Compute the direction vector from start to goal and normalize:

@g - O

D=1, e,

Step 2
Compute the number of discrete steps along D from start to goal:
n=cl|©g-0s|
where ¢ = constant which determines discretization size
Step 3

Discretize from @5 to @ in the direction of D until the first unsafe point is found.

Call the last safe point Og:

D
a=0s+7—
c

where j = last integer in 1,2,...,n before an unsafe point is found
Step 4

Continue the discretization through the unsafe region until the next safe point is
found. Call that point @y

©y = O + k2
C

where k = first integer in j+2, j+3.....n which yields a safe point

39

Step 5
Establish a set of n g p normalized search directions, GSD-’ orthogonal to D:
?
O¢p. D=0
:

where i=l,2,...,nSD and - represents the dot product operator.

Calculation of search directions is discussed in Section 4.4,
Step 6

If this is a subsequent search, prioritize the search directions by grouping them
according to their dot product with the last successful search direction. A technique
for so prioritizing the search directions is described in Section 4.5. The number of
groups used will affect the emphasis given to continuing searches in the previously
successful direction. The purpose of the prioritization is to favor search directions

based on their component in the direction of the last successful search direction.
Step 7

Search from the midpoint of the unsafe region, (@q + @})/2, in the (possibly prior-
itized) search directions until a safe point, designated as ¢, is found. The search
technique shall depend upon whether this is the initial search or a subsequent search.

If this is the initial search, search the entire set of search directions for the
safe point nearest to the center of the trouble region by radiating out equal discrete
steps in each search direction until a safe point is found or until all directions exceed
a joint limit and no safe point has been found.

If this is a subsequent search, search the highest priority group by radiating
out equal discrete steps in each search direction in that group until a safe point
is found or until it is determined that no safe point can be found in any of those

directions (such as a joint limit has been reached in each direction). If no safe point

60

is found in the highest priority group then repeat for the next highest priority group.
Repeat until a safe point is found or until all groupings of search directions have
been exhausted and no safe point has been found.

If no safe point could be found, reinitialize the global problem as from the last

point safely progressed to the global goal point and restart the entire procedure.
Step 8

Discretize along @4 to ©¢ and traverse as far along this segment as is safe. If this

entire segment is safely traversed goto Step 9. Otherwise goto Step 10.
Step 9

Progress toward all previous guide points in the opposite order in which they were
found, where guide points include not only previous intermediate goal points but
also the safe points found on the goal end of each unsafe region which invoked a
search. The global goal point is added as a final guide point. When progression
to a particular guide point is not entirely safe, that point is permanently dismissed
and progression is attempted toward the next guide point in the specified sequence.
The progression continues until an attempt has been made to progress to the global
goal point. If progression to the global goal point is safe, the global path planning
problem has been solved. Otherwise, redefine ®s as the last safe point in that

progression, @4 as the global goal point, and go to Step 1.
Step 10

Set @5 equal to the last safe point, and @4 equal to @, and go to Step 1.

4.3.1 Failure Condition

The heuristic fails when a call is made to Step 1 above with identical values
of @5 and @¢ as a previous call. This can occur by one of the following two failure

modes:

61

1. Cycling occurs
2. The first search following reinitialization fails to locate a safe point.

A 2D example which results in the first failure mode is shown in Figure 4.6. In

spite of the possibility that the heuristic will fail, the results presented later in this

safe space

\

Figure 4.6: 2D Example for which Heuristic Fails by Cycling

thesis seem to indicate that the heuristic provides the capability to solve realistic
and potentially difficult path planning problems. The example shown in Figure 4.6
does involve a concave obstacle. The heuristic does appear to perform better with
convex obstacles however the complexity and nonlinearity of the task space to c-
space mapping makes it unlikely that even simple problems will result in a c-space
with strictly convex obstacles. In addition, the ability to attack the problem from
either direction (see discussion following Assumption 5 in Section 3.2) would mean
that a problem would have to induce cycling if approached from either direction in
order to result in inability to find a solution. As the dimensionality of the space

increases, the likelihood of actual, practical robot path planning problems possessing

62

deep concave cavities of safe c-space in both directions (start toward goal and vice
versa) would intuitively seem to decrease. Such a c-space shape would probably not
occur for practical problems.

The cyclic failure mode is not sufficient to rule out the existence of a solution
since this mode can occur for a problem in which the search directions on the first
search following reinitialization happens to miss all available safe space in the search

hyperplane.

4.4 Computing Search Directions

This section discusses methods for computing search directions as required for
Section 4.3 Step 5.

Recall from above that the c-space traversal heuristic involves searching the
space orthogonal to and bisecting the unsafe region encountered in an attempted
traversal. For an n-dimensional space ©® = (6y),...,0n), the n-1 dimensional hyper-
plane to be searched shall be orthogonal to direction vector D = (dg,...,dn) and
shall include point @, = (0c0, ...y0cp), where Oc¢ is the center point of the unsafe

segment. Thus, points to be considered in the search shall satisfy:

n
dg(6g — bcy) +d1(6] — b)) + ...+ dn(fn —bc,) = 3 d;(8; —6c) =0 (4.1)

=1
From Equation 4.1, it can be seen that the search directions S = (6 — 6¢) must be
orthogonal to D:
d080+d151+...+dn8n=ZdisiZS-Dzo (4.2)
=1
Four procedures for determining search directions which satisfy Equation 4.2

were considered:
1. Searching a uniform grid

2. Radiating out along orthogonal basis vectors and their negatives.

63

3. Radiating out along a set of vectors made up of combinations of the n-1 free

variables in Equation 4.2.

4. Radiating out along uniformly distributed vectors made up of combinations

of orthogonal basis vectors.

These four procedures are discussed below. Selecting amongst the procedures for

implementation is then addressed in Section 4.4.1.
Procedure 1 Searching a uniform grid.

Searching a uniform grid would involve discretizing uniformly in the n — 1 dimen-
sional search space defined by Equation 4.2. Such an approach would clearly pro-
duce a very effective search from the standpoint that it would ensure finding a safe
point if one exists (within discretization limitations). However, this approach can
be quickly dismissed due to its computational complexity. For example, an n dof
problem discretized 100 points per axis (approximately every three degrees for a
typical revolute joint) would produce a grid containing 100(2—1) points. For a nine
dof problem, this would result in 1016 points. Even if one million points could be
mapped every second (far from achievable today) it would take more than 300 years

to exhaustively perform one search of such a uniform grid!
Procedure 2 Radiating out along orthogonal basis vectors and their negatives.

A set of n—1 n-dimensional linearly independent and orthogonal unit vectors satisfy-
ing Equation 4.2 can be computed. Such a set of vectors would constitute a basis for
the search space, i.e., each possible search direction could be represented as a linear
combination of the basis vectors. A set of orthogonal basis vectors will be uniformly

distributed in the space. Referring to the ith basis vector as B, = (bz-1 ooy bin),

64

the basis vectors must satisfy:

D B;= Zi_ db =0 i=1,...,n-1 (4.3)
Bi'Bj= Z’iczlbikbjkzo Liy=1,...,n—landi#; (4.4)

IB;|= 1 i=1,...,n—1 (4.5)

where D is the normal vector to the search space as per Equation 4.2, Equation 4.3
ensures that the basis vectors lie in the search hyperplane, and Equations 4.4 and 4.5
require all the basis vectors to be mutually orthogonal unit vectors.

There are, of course, an infinite number of orthogonal bases. Calculation of
search directions requires only one. The following set of vectors could be calculated

in the sequence shown and then normalized to yield one such orthogonal basis:

B; = (1,h,0,...,0)
By = (bll,pg,hg,o...,O)

By = (bzl,bgg,p3,/13,0....0) (4.6)

B,_1 = (bn—‘21~bn—‘22*'“’bn—Qn 2’pn—l*hn—1)

where the p; are chosen so that the B; and B, _| satisfy Equation 4.4 and then the
h; are chosen so that the B, satisfy Equation 4.3.

Radiating out along the orthogonal basis vectors and their negatives would
amount to considering search directions of the form +B,. This approach would
yield 2(n —1) search directions for an n dof problem (16 for a nine dof problem).
Thus, the number of search directions using this procedure would increase linearly
with the number of dof, i.e., the complexity of searching with search directions based
on this procedure would be O(n). While this is an attractive feature it could be
expected to perform poorly for cooperating robot path planning problems since such

a reduced set of search vectors might miss the relatively little safe space available.

65

This expectation was verified when search directions based on Procedure 2 were
found to be ineffective even for very simple robot path planning problems. The
reason for discussion of this procedure is to illustrate that attempts were made to

utilize as small a set of search directions as possible.

Procedure 3 Radiating out along a set of vectors made up of combinations of the

n-1 free variables in Fquation 4.2.

The third approach attempts to bridge the gap between the intractability of
Procedure | and the oversimplification of Procedure 2. This procedure involves
allowing the n-1 independent variables to take on all combinations of +sd; and
solving for the dependent variable using Equation 4.2, where the sd; may be chosen
for each joint ¢ as desired to vary the amount of motion being prescribed for joint .

This approach will yield 27~ 1 search directions for an n dof problem. While
this procedure results in tractable numbers of search directions (256 for a nine dof
problem), better performance may be possible using still more search directions.

A more extensive set of search directions could be computed by allowing the
n — 1 independent variables to take on all combinations of +sd; and 0 (except all
zeros) and solving for the dependent variable using Equation 4.2, where the sd; may
again be chosen for each joint 7. This will result in 3(" 1) — 1 search directions for

an n dof problem (6560 for a 9 dof problem).

66

This procedure for computing search directions is equivalent to considering all

combinations of +sd; (and 0 for the more extensive set) times the following n — 1

vectors:
d
Vl = (Sdles’-'voa 1d3d1)
dy sd
V, = (0,sds0,...,0, ’ds 2) (4.7)
dney Sdn_
V., = (o,...,o,sd,,_,,—‘—ds—d—‘)

The potential disadvantage of this procedure is that the search directions will
not, in general, be uniformly distributed in the search space. The degree to which
coverage of the search space is non-uniform will depend upon the coefficients in
Equation 4.2. Uniform distribution will occur only in the special case where dn >

d;, for all # n.

Procedure 4 Radiating out along uniformly distributed vectors made up of combi-

nations of orthogonal basis vectors.

The final approach for computing search directions, radiating out along uniformly
distributed vectors made up of combinations of orthogonal basis vectors, eliminates
the non-uniformity which results using using Procedure 3. A uniformly distributed
set of search directions could be computed by considering all combinations of £1
times the basis vectors. The basis vectors may be calculated per Equation 4.7. This
approach will yield on—1 gearch directions for an n dof problem. Note that these
search directions each involve a component along all of the orthogonal basis vectors.

An even more extensive set of search directions could be computed by con-
sidering all combinations £1 and 0 (except all zeros) times the basis vectors. This
will yield 3(n—1) _ 1 search directions for an n dof problem (6560 for a nine dof

problem).

67

4.4.1 Selecting a Procedure

As mentioned above, Procedures 1 and 2 were eliminated from further con-
sideration due to their computational complexity and apparent inadequacy, respec-
tively.

Procedures 3 and 4 are similar in that they result in tractable numbers of
search directions and in that the search density will automatically decrease with
increasing distance from the center of the trouble region. Since it is impractical
to have a uniform grid, it would seem desirable to decrease search resolution with
distance from the center of the unsafe region since it is generally more desirable
to find a point closer to the center of that region in order to attempt an efficient
circumvention strategy. In other words, given a choice between failing to find a safe
point near the center of the unsafe region and failing to find a safe point far from
the center of the trouble region, one would choose the latter.

The differences between Procedures 3 and 4 are:

® Procedure 3 produces a non-uniformly distributed set of search directions

whereas Procedure 4 guarantees uniform distribution.

® Procedure 3 allows for easy computation of search directions which favor cer-
tain joints whereas it is difficult to achieve such joint favoring using Proce-
dure 4 since the basis vectors will, in general, have components in all joint

directions.

The following example illustrates the uniform versus non-uniform distribution
effect. Consider a three dimensional problem (so the search space will be planar)
and let D = (2,2,1). The search directions that would be produced in the search
plane using Procedures 3 and 4 are shown in Figure 4.7, where sd} = sdo for
Procedure 3. Figure 4.7 shows that Procedure 4 consistently produces uniformly

distributed search directions while Procedure 3 does not.

68

(a) Search directions (b) Search directions
using procedure 3 using prodecure 4

Figure 4.7: Procedure 3 vs Procedure 4

Experimentation was done with Procedures 3 and 4 for the cases implemented
in Chapter 6. In all four scenarios considered (single 6 dof, single 9 dof, cooperating
6 dof, and cooperating 9 dof) both procedures were successful in solving a variety of
problems. For more difficult problems, however, Procedure 4 produced noticeably
better results, often with fewer search directions. This was true in spite of the ability
to favor certain joints using Procedure 3.

As discussed in Chapter 6, search directions computed from the more extensive
set based on combinations of xsd; and 0 times the basis vectors proved to be
practical and effective for six dof problems. For 12 dof problems (such as cooperating
nine dof robots), however, this procedure would produce 177146 search directions
and thus could potentially result in very long execution times. In the 12 dof case,
search directions computed from the smaller set based on combinations of *sd;
times the basis vectors (which yields 2048 for a 12 dof problem) proved to be a good

compromise between practicality and effectiveness.

4.5 Prioritizing Search Directions

This section discusses methods for prioritizing search directions as required for

Step 6 of Section 4.3.

69

Recall from above that the search directions are to be prioritized based on
their dot product with the previously successful search directions. Recall also that
the searches are conducted by looking at successively prioritized groups of search

directions. Two methods were considered for achieving this prioritization:
e Sorting the search directions
¢ Grouping the search directions into bins

The first method would simply involve sorting the entire list of search direc-
tions based on their dot products with the previously successful search direction.
Following the sorting, the search directions will be divided into groups of search di-
rections having similar priority. This type of sorting was found to be computation-
ally burdensome, unacceptably so for cases with several thousand search directions.

Grouping the search directions into bins involves much less computation than
sorting the entire list and would seem to provide similar performance to sorting
since the treatment of each search direction within a particular group differs only
in the order in which they are considered (and not in the relative depths considered
in each direction). Sorting into bins can be easily accomplished. If the dot product
of the it? search direction, S,, with the previously successful (or reference) search
direction, Sref’ is dp;, and the maximum and minimum dot products are dpmax
and dp,,,;,,, respectively, then a set of search directions can be grouped into g equal
breadth groups (bins) by the following rule:

Job o i~ dpmin I (45)

9 ~ dpmaz —dpmyin T 9

S; € bin(j) if

It is this technique of bin sorting which is implemented in Chapter 6.
Another variation on the prioritization method is to consider the past history of
successful search directions rather than simply considering the previous successful

search direction. This can be accomplished by computing dot products‘ with the

70

following reference search direction computed following a successful search:
Sr€f=ASref;+(1—/\)Ss (4.9)

where Sref’ is the previous reference search direction, Ss is the most recent suc-
cessful search direction, and A € [0, 1) represents a forgetting factor which may be
used to vary the emphasis on the past history. With A = 0, the method results in
prioritizing exclusively based on the last successful search direction. The case A =1
is disallowed since sref would be invariant in that case.

Since in cooperating robot cases the role between leading robot and tracking
robot may change (as discussed in the next Chapter), an effective reference search
direction must be calculated for the tracking robot after each successful search. This
effective reference search direction is the search direction which would have yielded
the safe point found had the search been based on the tracking robot rather than

the leading robot.

4.6 Comparison of the Heuristic to the Literature

This heuristic is somewhat similar to many of the c-space graph search tech-
niques in that it is based around selectiverather than exhaustive mapping of c-space.
Aside from that broad similarity, this heuristic is fundamentally and significantly
different from any of the approaches discussed in Chapter 2, with the most significant
difference stemming from the process used to guide the selective mapping process.
Nonetheless, it bares some some resemblance to Dupont’s selective mapping [5],
Glavina‘s goal directed sliding [46], and Warren’s vector based approach [58] (see
Section 2.1.1). Specific similarities and differences are discussed below.

The heuristic is similar to Dupont’s approach in that both attempt to initially
follow a c-space vector from start to goal and employ heuristics to attempt to min-
imize the amount of mapping required to circumvent unsafe portions of the path.

The key difference is the type of heuristic used to attempt to traverse the trouble

71

regions. Interested only in single (redundant) robots, Dupont successfully used task
space heuristics to build paths from each end of the trouble region until a feasible
solution was found. The approach being presented here utilizes the c-space traversal
heuristic described above to guide the selective mapping process.

The resemblance to Glavina’'s approach is that both perform a search in the n-1
dimensional hyperplane containing a point which was unsafe in the straight traversal
between two points. Glavina's approach, however, performs those searches at the
beginning of the trouble region and is therefore subject to blindly following strategies
which look locally promising at the beginning of the trouble region but which may
not lead to traversal around that region. Glavina's approach does, however, have
the advantage over the heuristic being presented in this thesis in that it does not
introduce intermediate points which may be in unreachable regions of free space. It
is felt that that advantage does not outweigh the inherent inability of a completely
local strategy to adopt a promising global course. It is expected that Glavina’'s
approach would become excessively computationally intensive for problems with six
or more dof even if the safe c-space possessed only relatively shallow concavities.

The resemblance to Warren’s approach is that both are graph search type and
“divide-and-conquer” in nature in that they attempt to identify an intermediate via
point by searching outward from the center of the trouble region. The resemblance
ends, however, when comparing the means used to identify a safe intermediate
point. As discussed in Section 2.1.1, Warren's approach projects a vector from the
centroid of the obstacle through the center of the unsafe region whereas the heuristic
presented in this thesis utilizes structured searches of the hyperplane bisecting the
trouble region. Warren’s approach, while relatively new and still under development,

has some potential difficulties:

e Obstacle centroids must be known in the space being considered (typically

c-space). This is computationally intractable for more than a few dof.

72

o If the centroid lies on or near the unsafe vector the resulting intermediate
point will lie at or near a previously found point thereby providing no new

information.

e The case for which no safe point is found along the vector is not considered.
As the dimensionality of the problem increases, the likelihood of finding a safe

point along one particular vector would decrease rapidly.

e The case of obtaining an intermediate point in an unreachable region of space

is not addressed.

These potential difficulties are all either addressed or eliminated by the ap-
proach being presented in this thesis.

Some of the potential fields approaches also adopt a “divide-and-conquer” style
solution to attempt to circumvent local minima difficulties. Some techniques used
in conjunction with potential fields approaches to locate intermediate trial points
(via points) include task space heuristics, uniform grids, randomized motions, and
use of potential functions (see Section 2.1.2). The heuristic presented herein does
not resemble any of these approaches beyond the fact that each involve a divide-

and-conquer style strategy.

CHAPTER 5
Utilizing the Heuristic for Robot Path Planning

This chapter explains how the divide-and-conquer c-space traversal heuristic pre-
sented in the preceding chapter may be utilized to solve single and cooperating

robot path planning problems. This chapter is organized into three main sections:
¢ Single Robot Path Planning
e Cooperating Robot Path Planning
e String Tightening
¢ Handling Constrained Motions

Sections 5.1 and 5.2 discuss the utilization of the heuristic for single and coop-
erating robot path planning problems, respectively. A “string tightening” method to
improve the efficiency of a path found by the planner is presented in Section 5.3. The
implementation of the path planning strategy for particular single and cooperating

robots is deferred until the following chapter.

5.1 Single Robot Path Planning

The single n dof robot path planning problem as defined in Section 3.4 can
be addressed by direct application of the heuristic presented in Chapter 4 where
the n dimensional space to be traversed is simply the configuration space of the n
dof robot. C-space points are mapped only as needed by updating the geometric
models of the robot links and the payload and performing interference detections as
required to determine whether or not the specified joint variables correspond to a

collision free configuration.

74

In all cases, the parameter ¢ which determines step size (see Step 2 of Sec-
tion 4.3) should be established for each task such that the largest possible step is
many times smaller than the step size necessary for thinnest part of the robot /payload
to step through the thinnest obstacle in one step.

Some potential issues which arise are:

Handling robots with mixed joint types

e Joint limit problems

Choosing A

Choosing number of bins

Multiple robot configurations

Singularity concerns

These issues are addressed below.

5.1.1 Handling Robots with Mixed Joint Types

Mixed unit concerns for robots with mixed joint types (some prismatic and
some revolute) may be eliminated by linearly mapping each joint’s actual range onto
the interval [0, 1], i.e.:

g= Lo —dmin (5.1)

9maz — Gmin

where qq, and gmax represent the actual joint value, the lower joint limit, and

Trins
the upper joint limit, respectively, all in identical units for each joint. Robots with
revolute joints having no joint limits may be treated by replacing the denominator

on the right hand side of Equation 5.1 with 360 degrees (27 radians). No multiple

rotations are permitted.

75

5.1.2 Joint Limit Problems

The joint limit problem is handled inherently since any point which would
violate a joint limit is simply mapped as unsafe. In addition, the prioritization
of search directions allows a reversal to take place when a potential joint limit is
encountered. The prioritization strategy will then favor the direction away from the
joint limit even after the immediate danger of hitting a joint limit is avoided. This
reversal tendency is more global than the technique often employed with potential

fields methods whereby a joint is repelled if it is in proximity to a joint limit.

5.1.3 Choosing A

Recall from Equation 4.9 that prioritization of search directions utilizes a pa-
rameter denoted as A. Experimentation with the test cases in Chapter 6 indicates
that small A (near or equal to 0) provides the most robust path planner from the
standpoint of finding a path for difficult problems, particularly for single robot prob-
lems. Path efficiency, however, appears to decrease with decreasing A. In addition,
small A does not perform particularly well for cooperating robot cases. This is likely
partially due to the swapping of roles between the leading and tracking robot. The

values used for A for the cases implemented will be presented in Chapter 6.

5.1.4 Choosing Number of Bins

Recall from Equation 4.8 that prioritized searches consider search directions
grouped into bins. For the wide variety of problems considered, either 5 or 10 bins
proved successful. In most cases, any number of bins in the 5 to 10 range would
yield a solution although the path efficiency may decrease with an increase in the
number of bins. Fewer than 5 bins did not provide robust performance and more

than about 20 bins led to very ineflicient paths (if a solution could even be found).

76

5.1.5 Multiple Robot Configurations

Recall from the problem definition in Chapter 3 that the start and goal joint
angles are given. In addition, note that the path planner operates exclusively in
c-space. As a result, multiple robot configurations which achieve identical end ef-

fector position/orientation need not be explicitly considered by the path planner.

5.1.6 Singularity Concerns

There are no singularity concerns using this approach for single robot path
planning since singularities are a task space phenomena whereas the path planning

approach is strictly configuration space based.

5.2 Cooperating Robot Path Planning

The two cooperating arm path planning problem is essentially equivalent to
the single arm problem with the addition of the closure constraint, Equation 3.3.
The closure constraint requires that, in order for a point in the configuration space of
the one robot to be considered safe, it must correspond to a reachable and collision
free configuration of the second robot. Thus, the basic concept for attacking the
cooperating robot path planning problem is to apply the c-space traversal heuristic
to one of the robots, referred to herein as the lead robot, with the other robot,
referred to herein as the tracking robot, acting as a constraint. For example, the
straight line path in c-space is determined for the lead robot and an attempt is
made to traverse from the start position towards the goal position. If this attempted
traversal is not entirely safe a search is conducted in the c-space of the lead robot
with due consideration to the tracking robot. When the lead robot reaches the global
goal position the entire path planning problem will have been solved. Mapping a
particular point in the c-space of the lead robot involves verifying that the closure

constraint can be met, updating geometric models of the robot links and payload,

-]
-1

and performing the required interference detection calculations.
The above rather simplistic conceptual explanation of applying the c-space

traversal algorithm to two cooperating robots neglects the following potential issues:
e Handling robots with mixed joint types

e Joint limit problems

Choosing a lead robot

Handling cooperating redundant robots

Multiple robot configurations
e Singularity concerns

The first two of these issues are identical for the cooperating robot case as for the
single robot case discussed in Section 5.1. The remainder of these issues are discussed

below.

5.2.1 Choosing a Lead Robot

The simplest way to choose a lead robot would be to always choose the same

robot. This simple approach can be dismissed for the following reasons:

e A small change in the configuration of the lead robot might correspond to a
much larger change in the configuration of the tracking robot thereby making it
difficult to discretize the path to ensure that it is collision free. In an extreme
case, it is possible that the lead rovut may have the same start and goal
positions for radically different start and goal configurations of the tracking

robot (such as an arm configuration change).

e It would not allow the tracking robot to easily change configuration since this

would typically involve passing the tracking robot through a singularity. It

78

is highly unlikely that the traversal heuristic would happen to prescribe lead

robot positions which would allow the tracking robot to change configuration.

These difficulties may be eliminated by choosing the lead robot for each call to
the heuristic based on relative distances (in c-space) between start and goal positions

of each of the robots. This approach can be represented as follows:

if ||@1, - O1,}| <r||©2, — ©2, then robot 1 leads (5.2)

otherwise robot 2 leads

where r > 1 represents a relative weighting between the two robots. Setting r = 1
would result in simply choosing the lead robot as the one with the greatest distance
to travel. Equation 5.2 is evaluated to select the lead robot for each segment of the
path where the s and g subscripts represent not the global start and goal positions
but rather the start and goal positions for the particular segment of the path being
addressed.

Experimentation with the cases in Chapter 6 revealed that oscillation tends
to occur using this method for » = 1. These oscillations resembled a tug-of-war
between the two robots.

Better path planner performance was achieved by choosing the lead robot
based on relative c-space distances with consideration to past history. This approach
favors the robot which led the previous segment unless the other robot has some

multiple r further to go, i.e.:

if robot i had led robot j and
if {1©j, — 0j,ll < r||@i, — @iy then robot i leads (5.3)

otherwise robot j leads

where 7 > 1 represents a relative weighting by which the distance for the formerly

tracking robot must exceed the distance for the formerly leading robot before the

79

roles are reversed. Essentially, this method incorporates some hysteresis into the
determination of the leading robot.
This approach was used to select the lead robot for the cases implemented in

Chapter 6.

5.2.2 Handling Cooperating Redundant Robots

The implementation of the c-space traversal heuristic for cooperating robots
as described in Section 5.2 requires that the closure constraint be checked for the
tracking robot. Since each point in the c-space of the lead robot defines a position
of the end effector of the tracking robot, inverse kinematics must be applied to
determine if and how the tracking robot can reach a prescribed position/orientation.
For cooperating non-redundant robots, the reachability of the second robot can
be easily determined using inverse kinematics which are one-to-one. Checking the
closure constraint for cooperating redundant robots, however, can be potentially
difficult since the inverse kinematics are not one-to-one. Two possible methods of

addressing the cooperating redundant robot path planning problem are:

e Applying the heuristic directly to one of the robots

o Applying the heuristic to a composite c-space with dimensionality equal to

total number of degrees of freedom for the cooperating system

These two approaches are discussed below.

5.2.2.1 Applying the Heuristic Directly to One of the Robots

Application of the procedure directly to one of the robots would require some
means for performing inverse kinematics on the redundant tracking robot. This in-
verse kinematics problem could be handled either by iterative testing of a number of

prescribed positions for all but six of the joints or by utilization of a potential fields

80

based inverse kinematics solution. Iterative testing would likely prove very compu-
tationally expensive. A potential fields based inverse kinematic solution would be
computationally tractable. Such an approach, however, has an intuitive disadvan-
tage, namely that it does not treat all the free variables of the path planning problem
in the same fashion. In implementation terms, this means that the treatment of the
tracking robot would not contribute significantly to the overall strategy for solving
the global cooperating robot path planning problem.

In attempt to further clarify this point, consider an example for which a po-
tential fields inverse kinematics solution is used for the tracking robot. The inverse
kinematics applied to each point prescribed by the lead robot must consider the
position of the tracking robot at the previous point. This is necessary to avoid a
discontinuous path for the tracking robot. The difficulty arises when the lead robot
prescribes a point in the progression for which the inverse kinematics fail for the
tracking robot. That failure of the inverse kinematics is contingent upon the path
of the tracking robot up to the point before failure. Since no global path planning
strategy was incorporated into the inverse kinematics of the tracking robot, it seems
likely that better results might be obtained using a different strategy for selecting

the configuration of the tracking robot.

5.2.2.2 Applying the Heuristic to a Composite C-Space

This technique for considering cooperating redundant robots was developed to
enable the heuristic to be applied to a space with dimensionality equal to the effective
number of dof for a cooperating system of robots. To illustrate this method, consider
an ny dof robot (Robot 1) working cooperatively with an ng dof robot (Robot 2),
n; > 6. The mobility of the cooperating system is m = n] +n9—6 per Equation 1.1.
The two robots can be conceptually replaced with an m dof lead robot and a six

dof tracking robot by treating no—6 links of Robot 2 as if they belong to Robot 1.

81

In this manner, the c-space traversal heuristic can be applied to the mD c-space
of the composite lead robot while one-to-one inverse kinematics can be applied to
determine if the tracking robot can satisfy the closure constraint.

The main concern regarding this approach is that it results in increased di-
mensionality of the space which must be searched when implementing the c-space
traversal heuristic. This increased dimensionality does, however, accurately reflect
the problem complexity and is therefore considered reasonable. It also seems rea-
sonable to expect that the traversal heuristic would handle the extra dof in a more
logical fashion than considering them in the inverse kinematics of the tracking robot.

Application of this procedure to cooperating nine dof robots would amount
to considering a twelve dof composite robot being tracked by a six dof robot. The
heuristic would then be applied to the 12D c-space of the composite robot. Results
presented in Chapter 6 illustrate that this technique is a practical and effective way
to address the path planning problem for cooperating nine dof robots.

A similar approach could be applied to cooperating robots with less than six
degrees of freedom. For example, consider two five dof manipulators. Since the
inverse kinematics for the five dof robot would be overdetermined (i.e., not every
position and orientation would have a solution), it would appear more effective to
plan based on, for example, the first four joints of a lead robot. The lead robot’s
remaining joint and the five joints of the tracking robot would effectively result in a
six degree of freedom robot with one-to-one inverse kinematics. In this case, such an
approach would actually reduce the dimensionality of the search space (from five to
four) as compared to direct application of the heuristic to one of the robots. Once
again, the heuristic is applied to a space with dimensionality equal to the actual

mobility of the cooperating system.

5.2.3 Multiple Robot Configurations

In general, a six dof robot will possess a finite number of distinct robot con-
figurations which achieve identical end effector position/orientation (such as elbow
up or elbow down for a Puma). This situation is represented mathematically in
Equation 3.5. Multiple configurations are handled inherently for the lead robot just
as in the single robot case. However, special consideration is required to address

this issue for the tracking robot. The following set of rules address this issue:

1. Configurations must be defined such that, for the robot in any one configu-
ration, an infinitesimal change in end effector position/orientation will always

correspond to an infinitesimal change in the corresponding joint angles.

o

During progressions forward through safe space (Steps 3 and 9 of Section 4.3),
the tracking robot shall maintain the same configuration as it had at the start

of that segment of the path.

3. While mapping through unsafe space in search of a safe point (Step 4 of
Section 4.3), only the configuration of the tracking robot at the goal position

of the current segment of the path shall be considered.

4. While conducting searches (Step 7 of Section 4.3), all possible configurations

of the tracking robot shall be considered.

These rules will enable full use of all available configurations while prohibiting dis-

continuous motions of the tracking robot for smooth motions of the leading robot.

5.2.4 Singularity Concerns

Robot arm degeneracy at singularities is handled inherently by the path plan-
ning method. For the lead robot. only singularity-free c-space is considered. For

the tracking robot, any region prescribed by the lead robot which cannot be tracked

83

by the other robot is mapped out as an unsafe region. This combined with the
ability to swap roles between the leading and tracking robots results in a planner
which inherently handles singularity concerns for cooperating robots. This means
of handling singularities does not attempt to physically avoid singular configura-
tions but rather allows either robot to pass through singularities as necessary when

attempting to solve the path planning problem.

5.3 String Tightening

The path planning procedure presented thus far has a principle objective of
finding a feasible solution. As a result, the paths found will typically be sub-optimal
in some sense and it should be possible to modify a feasible path found by the planner
to produce a better one. This process of path modification may be referred to as
string tightening. This section presents a brief history of approaches used for string
tightening and then presents an approach which can be utilized for string tightening

paths found for two cooperating robots.

5.3.1 History of Smoothing

Once a collision free path has been found by a robot path planner, it can be
further optimized by numerical methods. A commonly used cost function aims to
minimize the length of the path while incorporating safety clearances from obstacles.

The resulting performance index to be minimized can be expressed as:

J= (29 Y)
= Jo. U+ prgy@ (5.4)

where D(®) is the minimum distance between the robot and obstacles, w is a
weighting factor, and the integral is taken over all configurations connecting @
and @g. Polytope methods seem to be the current state of the art for computing

robot to obstacle distances. Bryson and Ho [96] note that several numerical methods

84

may be used to find a path with minimum J using any feasible path as an initial
guess. Simple gradient methods perform reasonably well for this purpose. The
resulting path, however, is only optimal in the vicinity of the initial guess.

An alternate technique for path smoothing which also attempts to shorten
a path while maintaining due safety clearances is Thorpe’s [97] path relaxation
technique. This process begins with a mobile robot path consisting of straight line
connections between a sequence of nodes. The relaxation involves moving one node
at a time in either direction perpendicular to the line connecting the preceding and
following nodes in order to minimize the cost of traversing between the three nodes.
The cost function is similar to Equation 5.4 since it includes length of path segment
with a penalty for proximity to obstacles or unmapped (unknown) regions. Since
moving a node may affect its neighbors, the process is repeated until no nodes move
more than some small tolerance.

Another technique which can be used to smooth paths, avoid collisions, and
move paths away from objects is based on potential fields. Krogh [74] presents one
such approach. Krogh uses sensory measurements of obstacles as feedback during
execution of paths planned with another algorithm. This feedback can help to

smooth jagged paths and to steer the path away from obstacles.

5.3.2 String Tightening Algorithm

This section presents a method for improving upon a path produced by the
cooperating robot path planner. Recall from Chapter 3 that the path planner output
consists of a sequence of closely spaced knot points for both robots along a feasible

and collision free path.

85

5.3.2.1 Measure of Goodness

A variety of possible criterion may be used to evaluate the quality of a path.
For string tightening purposes, the goodness of a path may be measured by the sum
of the lengths of the joint space trajectories for the two cooperating robots. Since
the path planner produces discretized paths for both robots, the objective during

string tightening is to reduce the following cost function:

N 2 N nr

Ly = > | .Z (0r;(i+1) = 0r; (1)) (5.5)

r=li1=1\y =1
where:
L{V = the sum of the joint space trajectory lengths

N = number of knot points in path
r = robot identifier

nr = number of dof for robot r

07‘j(i) = it knot point for robot 7 joint j

If the original path is considered to be a string passing through the knot
points in the joint space of each of the robots, then the objective for improving
upon the path is to shorten the sum of the string lengths while maintaining the
same endpoints. Hence the name string tightening as suggested by Dupont [5].

The tightening algorithm which was implemented involves examining each
sequence of three adjacent knot points and performing whichever of the three options

below produces the most desirable effect on L¥:

1. Make no changes to the knot points.

2. Modify the second knot point for robot 1 so that the three knot points are

straight in the joint space of robot 1 (if not already so).

86

3. Modify the second knot point for robot 2 so that the three knot points are

straight in the joint space of robot 2 (if not already so).

The feasibility of options 2 and 3 must be determined with consideration to
closure and collisions. The procedure described in Section 5.2 can again be used to
simplify the question of closure for cooperating redundant robots. The incremen-
tal effect which each of the above options will have on LY can be assessed using
Equation 5.5 over the appropriate three knot point segment.

These local adjustments are continued until no significant improvement can
be obtained from further adjustments.

A conceptual illustration of the string tightening algorithm for cooperating
robots is shown in Figure 5.1. An initial three knot point segment for the two robots
is shown in Figure 5.1a. These three knot points are a portion of a much longer
many knot point path. Figure 5.1b and c show the effect of options 2 and 3, above.
In this example, option 2 (moving the second knot point of robot 1 in line with
its neighbors) produces the most significant reduction in path length. Thus, this

iteration would move each robot’s second knot point to their positions in Figure 5.1b.

(a) Original knot points (b) Pull Robot 1 tight (c) Pull Robot 2 tight

02,49
Ol

Oliv1 oo,

o1, 02;

Figure 5.1: Local Effect During String Tightening

For single robot problems, Equation 5.5 need only be evaluated for one robot

and the options are reduced to two:

87

1. Make no changes to the knot points.

2. Modify the second knot point so that the three knot points are straight in the

robot’s joint space (if not already so).

5.3.2.2 Limitations of the String Tightening Algorithm

Because this string tightening method involves a discretized approximation
to continuous deformation, the tightened path may still be far from optimal. For
example, consider Figure 5.2. A safe path may be found as shown in Figure 5.2a.
A shorter path found by continuous deformation of the original path is shown in

Figure 5.2b. However, this path is suboptimal as shown by Figure 5.2c.

(a) Path found (> Path after (©) Shorter path
by planner string tightening goes unfound
*° * |k, ok

Figure 5.2: String Tightening May Not Produce Optimal Path

One disadvantage of the approach is that the shortened paths tend to provide
very little obstacle clearance. This property is generally more acceptable for ma-
nipulators than for mobile robots because the manipulator environment is generally
accurately known and the manipulator control is typically precise. Possible means
for addressing this limitation are discussed in Section 8.2.1.

This string tightening algorithm is also unable to find any paths which would
require temporary lengthening of the path in order to ultimately achieve a better

path.

88

5.3.3 Comparison to Other Path Smoothing Approaches

This approach is very similar to Thorpe’s approach discussed in Section 5.3.1

where the differences are as follows:
e Cooperating robots are considered.

e The cost function is c-space distance only, whereas Thorpe includes distance

from obstacles in the cost function.

e The sequences of points are closely spaced knot points, whereas Thorpe’s node

points may be far apart.

5.4 Handling Constrained Motions

Earlier, it was assumed that the end effector motion between the start and
goal positions may be arbitrary. Though this is a valid assumption for the typical
robot path planning problem in free space, there are cases where contact between
the payload and an obstacle may lead to constrained rather than arbitrary end
effector motion. For example, the payload may come into planar contact with a
table surface. As such, the end effector motion is confined to 3 dof (two translations
and a rotation) as opposed to 6 dof. Although such cases are not considered in
this thesis, the heuristic could be utilized to solve such problems by applying the
heuristic in the task space defined by the reduced degrees of freedom rather than in
the joint space of the robot. The robot must be away from singularities in order for

such an approach to be effective.

CHAPTER 6

Implementation and Results

This chapter presents the implementation details and results of applying the path
planning method described in the preceding chapters to the following single and

cooperating robot scenarios:

e The CIRSSE Testbed (single 6 dof, single 9 dof, cooperating 6 dof, and coop-

erating 9 dof cases)
o The Automated Structure Assembly Lab at NASA Langley (6 dof case)
e Cooperating Pumas Assemble a Truss Structure

The specifics of each of these implementations and sample results are presented
in sections which follow. First, some points common to all of these implementations

are presented in the next section.

6.1 Characteristics Common to All Implementations

All of the implementations that will be discussed in this chapter have the

following common characteristics:
o Heuristic is applied generically
e Geometric modeling is done with polytopes.

A hierarchical interference detection scheme is used.

Paths may be visually simulated using CimStation.

The programs are written in C.

These characteristics are discussed below.

39

90

6.1.1 Heuristic is Applied Generically

All of the cases invoke the c-space traversal heuristic in its completely gen-
eral form. In other words, in no case are task or hardware specific assumptions or
modifications utilized. Search direction computation is always done strictly math-
ematically. The ability to directly apply the heuristic generically to a variety of'
problems suggests that the planning methodology presented herein could be quickly

and effectively applied to hardware or tasks not addressed herein.

6.1.2 Geometric Modeling with Polytopes

The geometric modeling scheme implemented to enable interference detection
utilizes polytope models of the robot links, payload, and obstacles in the workspace.
Details of the modeling may be found in [6]. A polytope is a set of points whose
convex hull (the smallest volume which encloses all points) describes the object
being represented. The polytope representation incorporates a radius which can be
used to achieve a safety margin. A few simple 2D polytopes are shown in Figure 6.1.
In 3D, a two vertice polytope would correspond to a cylinder with hemispherical
end caps, where the radius of the cylinder and of the end caps is specified by the
polytope radius. A 3D block can be made using eight vertices and a radius of zero.

The polytope representation scheme was chosen because it permits accurate
modeling of the robots and typical obstacles in the workcell while enabling relatively
fast interference checking. Although each polytope represents a convex object, con-

cave objects may be easily modeled as several distinct convex polytopes.

6.1.3 Hierarchical Interference Detection

Collision checking is currently being done in a two level hierarchy. First, spher-
ical approximations for each pair of potentially colliding objects are examined. If

the spherical approximations do not intersect then there is no possibility of collision

sy

pace

TLnDi ALY ohank

91

Figure 6.1: Some 2D Polytopes

between the pair of objects under consideration. If the spherical approximations
do intersect then a polytope distance calculation routine is invoked to determine
whether or not the two objects intersect (collide). The polytope routines being used
were provided by Hamlin and Kelley [98, 99]. The reason for the spherical approxi-
mation level of the hierarchy is to reduce the number of computationally expensive
calls to the polytope distance calculation routine.

Mapping a point in c-space thus reduces to the following steps:

1. Verifying the closure constraint and determining the configuration of the track-

ing robot (not necessary in single robot cases).

2. Updating the coordinates of the sphere centers and polytope vertices based on

the joint angles of the point being mapped.
3. Performing interference detection per the hierarchy discussed above.

The interference detection routine for the path planner simply needs to deter-
mine a yes or a no regarding collision. This enables use of faster routines than would
be required if the path planner needed to know distances and directions between

pairs of objects.

92

6.1.4 Animation of Paths

Paths found by the path planner may be visually animated using any suitable
robot simulation package. We use CimStation, a commercially available package,
for path animation purposes. The interface between the path planning programs
and CimStation is a file storing the sequence of knot points determined by the path
planner. CimStation then replays the sequence to animate the path found by the
planner. The CimStation workcell model must, of course, be consistent with the
world model given to the path planner. The CimStation model of the CIRSSE
testbed used for this work was developed by Hron [100]. The CimStation model of
NASA Langley’s ASAL lab was provided to us by NASA Langley. The model used
for the cooperating Pumas assembling a truss is an edited version of the model of
the CIRSSE testbed.

For CIRSSE testbed cases, path planning program output may also be run
on the actual hardware by first applying a trajectory generation routine to the
planner output and then running the resulting trajectory in the typical fashion.
For cooperating robot cases, path execution in this manner requires use of active
compliance on one of the two end effectors at any given time to maintain acceptable
internal forces on the payload. Further work to be done in the area of integrating
the path planner into the CIRSSE testbed is discussed in Section 8.2.2.

CimStation was also found to be very useful in defining the start and goal
joint angles for path planning problems, particularly in the cooperating robot case.
Due to the tremendous loss of workspace due to the closure constraint, it is easy
to inadvertently define start and goal positions of the robot which are feasible but
which probably have no path which can connect them. CimStation may be used
to view different robot configurations and to quickly determine the feasibility of a
robot reaching a particular pose. The various robot configurations may be tried as

input to the path planner until a solution is found.

93

6.1.5 Description of Programs

All of the path planning programs were implemented in the C programming
language. Portions of the program utilize code developed by Schima [6]. The path
planning programs are similar for all cases considered. A sample flowchart is shown
in Figure 6.2.

Program inputs and outputs are per the problem statements in Chapter 3.
Additional output is included to document and evaluate the performance of the

path planner. This output includes the following:

Np = Number of knot points in path.
Ns = Number of searches required.
AL/L = Percent reduction in path length due to string tightening.

Lf = Final path length after string tightening (Eqn. 5.5).
Note that this is dimensionless since joints are

scaled using Equation 5.1

Nsph = Calls to spherical interference check function.
Npoly = Calls to polytope interference detection function.
tpath = Time to find safe path.
ttight = Time to string tighten.
tcc = Time spent collision checking (both phases).
tpoly = Time spent in polytope phase of collision detection.
tiot = Total time.

The condition used to terminate string tightening is that a knot point will be
moved only if doing so will reduce the distance over the three knot point segment

centered at that point by at least 0.5 percent.

Read in world model
and path planner data

!

Ts = global start
Tg = global goal

Ta = last safe point

STOP
No path found

Progress to points
on stack

-y

Ts, Tg
match prior
call?

Traverse from
Ts toward Tg

traversal N
safe?
YES
Tg -
global goal?
YES

bt

Ts = last safe point
Tg = globai goal

[Apply string tightening]

| Store output files

Tb = first safe point

after unsale region

l Compute search directions

initial search?

Prioritize search
directions

YES
l Perform search.

!

safe point
Te found?

Tg -
globai goal?

Put Tb, Tg on stack

Ts =Ta Tg=Tc

STOP
No path found

Figure 6.2: Flowchart of Path Planning Program

95

6.2 CIRSSE Testbed

The path planning method described herein has been implemented for the
robotic testbed system of the Center for Intelligent Robotic Systems for Space Ex-
ploration (CIRSSE) at Rensselaer Polytechnic Institute (RPI). The CIRSSE testbed,
shown earlier in Figure 1.2, consists of two 6R Puma 560’s, each of which rides on a
separate Aronson 1P-25 platform. The kinematic parameters including joint limits
may be found in [101] and in Appendix A.

The methods described in this thesis have been implemented for four different

CIRSSE testbed scenarios:
¢ Single Puma
e Single 9 dof robot (platform plus Puma)
e Cooperating Pumas
e Cooperating 9 dof robots

Numerous path planning problems were contrived for these different scenarios
in attempt to illustrate the effectiveness of the path planner for various potentially
difficult path planning problems. Implementation details and sample results for
each of the scenarios are presented below. Applications of the path planner to more
practical path planning problems are discussed later in Sections 6.3 and 6.4. Except
as noted for the case specifically illustrating the effect of string tightening, all paths
illustrated herein are the final path obtained after string tightening. Start and
goal joint angles and obstacle definitions for the included CIRSSE testbed examples

(Examples 1 through 4) are provided in Appendix B.

96

6.2.1 Single Puma 560

The path planner was implemented for such a single Puma path planning

problem. The specific parameters of the implementation are as follows:

1 .
¢ = 3% step size (See Step 2 of Section 4.3)
Ngp = 242 search directions per Procedure 4

g = 10 bins (see Equation 4.8)

A = 0.5 forgetting factor (See Equation 4.9)

6.2.1.1 Example 1

A sample path found by the single Puma path planner is shown in Figure 6.3.
Figure 6.4 provides a top and side view of the start configuration. A trace of the
path followed by the payload is shown in Figure 6.5.

The results for this example are summarized in Table 6.1. The variables in
the Table are as defined in Section 6.1. As shown in the table, the total time
required to find a path and perform string tightening was just over three minutes.
Approximately 60% of the total time involved finding a safe path with the remaining
time utilized for string tightening.

The payload for this example is a 0.7 meter long strut, a scale version of the
type which might be used to construct space structures such as Space Station Free-
dom. A long, thin payload such as this highlights the need for consideration to
rotational as well as translational degrees of freedom. This path planning problem
is potentially difficult because limits on joint 1 prohibit a simple counterclockwise
rotation (viewed from above) which would move the payload from start to goal. As
a result, the prominent motion is clockwise and escaping from the box-like obstacle
near the start requires some backtracking to remove the strut from within the box.

Once the strut is out of the box there is also potential for allowing the strut back

Single Puma | Coop. Pumas | Single 9 DOF | Coop. 9 DOF

(Example 1) | (Example 2) | (Example 3) | (Example 4)
Np 717 524 1124 1307
Ng 112 154 42 78
AL/L 20.2 16.4 8.4 14.2
Lf 3.04 2.14 9.35 14.27
Nsph 745K 1.72M 1.60M 3.34M
Npoly 128K 390K 94.5K 189.5K
thath 114 sec 560 158 167
tight 71 38 185 384
tee 101 283 118 247
tooly 69 201 52 115
tiot 185 598 343 591

97

Table 6.1: Summary of Results for CIRSSE Testbed Examples (times

in seconds)

into the box. Similarly, achieving the goal position requires passing the triangular

obstacle, aligning the strut for insertion between the sides of the triangle, and per-

forming that insertion. This example also illustrates the fact that concave objects

such as the box and the triangle may be easily modeled as several distinct convex

polytopes whose combined effect defines a concave task space object.

98

(a) Start Position (b)

Figure 6.3: Sample Results for Single Puma (Example 1)

(a) top view

A

(b) side view

\ {A

Figure 6.4: Start Configuration for Example 1

Figure 6.5: Trace of Payload Path for Example 1

99

100

6.2.2 Single 9 DOF Robot

The path planner was implemented for a single nine dof robot consisting of one
of the testbed’s platforms plus the attached Puma. The specific parameters of the
implementation are identical to those presented in Section 6.2.1 for a single Puma
except for the number of search directions. In the single 9 dof case, the number of

search directions is:

N Sp = 6560 search directions

6.2.2.1 Example 2

A sample path found by the single 9 dof path planner is shown in Figure 6.6.
This problem is identical to the problem in Example 1 except that the extra three
dof of the platform may be utilized. The path found by the planner uses the platform
translation and tilt capabilities to aid in obstacle avoidance.

The results for this example are summarized in Table 6.1. As shown in the
table, the total time required to find a path and perform string tightening was
just under ten minutes. The results also show that the redundancy was utilized to
produce a path whic~ was approximately 50% shorter than the path obtained for
the Puma alone. O~ »0% of the total time involved finding a safe path with the

remainder of the time utilized for string tightening.

101

(a) Start Position (b)

Figure 6.6: Sample Results for Single 9 DOF Robot (Example 2)

102

6.2.3 Cooperating Puma 560’s

Addressed in this implementation is the path planning problem for the two
CIRSSE testbed Pumas working cooperatively. Thus, the platforms may be used
to initially position the two Pumas but are stationary throughout the planning

problem. The specific parameters of the implementation are as follows:

¢ = —— step size

300
NSD = 242 search directions

g = 3 bins
A = 0.5 forgetting factor

r = 4 (See Equation 5.3)

6.2.3.1 Example 3

This example involves a space containing six obstacles arranged in a maze-like
fashion. The path planner successfully finds the path shown in Figure 6.7 which
traverses from start to goal with no collisions. The payload is a 3cm x 3cm x 110
cm box. The clearance between the long horizontal obstacles is 15cm. Figure 6.8
provides a top and side view of the start configuration. Similarly, Figure 6.9 provides
a top and side view of the goal configuration.

The results for this example are summarized in Table 6.1. As shown in the
table, the total time required to find a path and perform string tightening was under
six minutes. Approximately 46% of the total time involved finding a safe path with
the remaining time utilized for string tightening.

This example seems to reflect the maximum level of difficulty which the coop-
erating Puma path planner as presently implemented can solve within a reasonable
amount of time. For example, if the obstacle near the goal end of the passageway

between the two long obstacles is lengthened downward by 0.1 meters the planner

103

fails to find a path (when allowed to try for over an hour). This failure to find a
solution occurs even though it is apparent to the user that a solution does exist.
Example 3 is also a path planning problem which the planner cannot solve if the
start and goal positions are interchanged. In that case the planner begins by going
below the open passageway between the long obstacles and then fails to find a path
which can circumvent the lowest obstacle. Once in this position, it seems likely
that a planner would need to resort to an impractical exhaustive mapping of a huge
concavity before determining that significant backtracking would need to take place
to find the opening to the passageway.

When difficulty was experienced with the cooperating robot path planner (co-
operating 6 and cooperating 9 dof case), the source of the difficulty virtually always
turned out to be in the choice of the start and goal robot configurations (i.e., the
start and goal joint angles). Such difficulties appear difficult to address intuitively
but are easily addressed brute force by trying all combinations of feasible Puma
configurations at the start and goal positions. This typically resulted in at least one

suitable problem definition for which the planner was successful.

104

(a) Start Position

]

(f) Goal Position

Figure 6.7: Sample Results for Cooperating Pumas (Example 3)

105

(a) top view

& Wil

(b) side view

U

Figure 6.8: Start Configuration for Example 3

(a) top view

(b) side view

L

Figure 6.9: Goal Configuration for Example 3

106

6.2.4 Cooperating 9 DOF Robots

Addressed in this implementation is the path planning problem for the two 9
DOF CIRSSE testbed robots working cooperatively. The specific parameters of the

implementation are as follows:

¢ = & step size

NSD = 2048 search directions

g = 10 bins
A = 0.5 forgetting factor
r = 10

Recall from Chapter 5 that the c-space traversal heuristic is applied in a 12D
space for cooperating 9 dof path planning problems. As a result, the complexity
of the cooperating 9 dof robot path planning problem is immensely higher than
the complexity of the cooperating 6 dof. This increased complexity would result in
311 _1 or 177146 search directions using Procedure 4. Since such a number of search
directions would be computationally impractical, this implementation utilized the

reduced set considering all combination of 1 times the basis vectors. This results

in 211 of 2048 search directions.

6.2.4.1 Example 4

A sample path found by the cooperating 9 dof robot path planner is shown in
Figure 6.10. The start and goal positions appear in the upper left and lower right,
respectively. Figures 6.11 and 6.12 provide top and side views of the start and goal
configurations, respectively.

The results for this example are summarized in Table 6.1. As shown in the

table, the total time required to find a path and perform string tightening was just

under 10 minutes for this example. Approximately 30% of the total time involved

finding a safe path with the remaining time utilized for string tightening.

108

(f) Goal Position

(a) Start Position

(c)

(e)

Figure 6.10: Sample Results for Cooperating 9 DOF (Example 4)

109

(a) top view

(b) side view

=

Figure 6.11: Start Configuration for Example 4

(a) top view

(b) side view

o

Figure 6.12: Goal Configuration for Example 4

110

6.2.5 Effect of String Tightening

An example of the effect of string tightening on the payload path for a cooper-
ating nine dof robot path planning problem is shown in Figure 6.13. Parts (a) and (b)
of the figure show traceé of load positions along the path before and after string tight-
ening, respectively. The string tightening phase required approximately 30 minutes

computation time and resulted in a 37% reduction in path length.

(a) Start Position (b) Goal Position

c) “iripper paths before tightening (d) Gripper paths after tightenin
PP g g g

,3:.;;{(

5
\

Figure 6.13: String Tightening a Path for Cooperating Nine DOF Robots

111

6.3 NASA Langley’s Automated Structure Assembly Lab

A CimStation model of NASA Langley's Automated Structure Assembly Lab
(ASAL) is shown in Figure 6.14. The system consists of a 6 dof Merlin robot, shown
in Figure 6.15, mounted to a xy-positioning table (referred to as the carriage), and
a turntable. The turntable includes a triangular platform which can rotate around
a vertical axis through its center. The Merlin robot is kinematically similar to a
Puma. The objective of the ASAL is to assemble truss structures consisting of 102
2 meter long struts. Such a truss is illustrated in Figure 6.16. The truss is assembled
upon the turntable of the ASAL by positioning the carriage and the turntable such
that the Merlin may take each strut from a canister near the base of the Merlin and
install it in its final position in the assembly.

A single arm path planner was implemented for the ASAL environment. The

implementation parameters are as follows:

1)
¢ = —— step size
NSD = 242 search directions
g = 5 bins

A = 0.0 forgetting factor

The assembly sequence considered was provided by NASA. The path planner
quickly found paths for the first 21 struts since there is little possible interference
at that stage. Due to symmetry, the assembly of the remaining 81 struts can be
accomplished using only 21 unique trajectories for the Merlin with the appropriate
carriage and turntable positions for each strut. The path planner was able to find
feasible paths for all 102 struts with solution times ranging from 1 to 30 minutes,
with the vast majority of solution times in the 2 to 5 minute range. Since the final
approach must be in a specified direction, the goal positions used were 10 cm from

the final strut position with the end effector oriented to allow the final insertion to

112

be performed by a straight task space move.

This implementation of the path planner for the ASAL assembly task illus-
trates the potential usefulness of the path planning technique presented in this thesis
for solving practical, potentially very difficult real-world path planning problems.

Some particular comments regarding this implementation follow:

e The path planner has no trouble with goal positions placing the load or robot

in very close proximity to obstacles.

e The path planner performs well even with a large number of obstacles. For
example, the final few struts of the assembly involve over 100 workspace ob-
stacles. The additional collision checks required near the end of the assembly

seem to increase execution time by a factor of approximately two.

e The paths found typically include segments which are obstacle boundary trac-
ing. Because of the close tolerances involved, it is not practical to simply model
the objects larger than actual size to provide a safety margin since so doing
may result in an unsolvable problem. This shortcoming was noted earlier in

Section 5.3.2.2 and possible remedies are addressed in Section 8.2.1.

e The nodes to connect the struts were not modeled. As a result, some of the
paths might collide with the nodes if the paths were used in an actual assembly.
This could be remedied simply by modeling the nodes and including them in
the collision checking routine. Due to the small size of the nodes it is expected
that including them would have little impact on the difficulty of the path

planning problems.

o In a few cases the path planner was not always able to solve the problem
quickly in the forward direction but could quickly solve the problem in the

opposite direction. Although a very confined goal position makes it likely that

113

solving in reverse may prove easier, trial and error was the only sure way to

decide which direction would yield better performance.

e Return paths for the robot after inserting a strut were not planned.

6.4 Cooperating Pumas Assemble a Truss

This section describes the implementation of the path planner to a task whereby
two Pumas work cooperatively to assemble a 24 strut truss. The workcell for this
implementation with the completed truss is shown in Figure 6.17. The pumas are in
their start position in Figure 6.17. The workcell includes two Puma 560’s which are
500 cm apart and mounted to a carriage. The carriage can translate toward or away
from a turntable upon which the truss is assembled. The carriage and turntable
are used to position the Pumas and the partially completed truss structure such
that the Pumas may insert each strut without concurrent motion of the carriage or
turntable. The struts are 133 cm long. The robot end effectors are 100 ¢cm apart
when grasping a strut. The parameters for this path planning implementation are
as described in Section 6.2.3 for the CIRSSE Pumas.

The planner successfully planned paths for all 24 struts with solution times
per strut ranging from less than one minute to approximately 10 minutes. Some

points regarding this implementation are as follows:

e Many of the paths found involve multiple arm configurations for one or both

Pumas. As a result, the robots pass through many task space singularities.

e There is significant potential for collision between the robots due to their

proximity.

o Although the start positions were identical and all the goal task space positions
were known, trial and error was typically necessary in order to determine

suitable goal Puma configurations which would enable a solution to be found.

114

(a) Isometric View

(b) Top View

(c) Side View

Figure 6.14: NASA Langley’s Automated Structure Assembly Lab

115

Figure 6.15: 6 DOF Merlin Robot with End Effector for Truss Assembly

(a) Isometric View (b) Top View

Figure 6.16: 102 Strut Truss Structure

116

Figure 6.17: Workcell for Cooperating Pumas Assembling Truss

CHAPTER 7
Discussion of the Path Planning Strategy

This chapter discusses the path planning strategy presented in this thesis. This

chapter is organized into three main sections:
o Completeness
e Computational Complexity
e Overall Effectiveness

Completeness and computational complexity are discussed in Sections 7.1
and 7.2, respectively. Section 7.3 attempts to judge the overall effectiveness of

the strategy.

7.1 Completeness

Unfortunately, the path planning approach is not complete. In other words,
the approach does not guarantee that a solution will be found or determine that a
solution does not exist. Based on the'literature (see Chapter 2), it appears to be
difficult to achieve both completeness and practicality for reasonably difficult yet
practical path planning problems with more than a few degrees of freedom. Since
our emphasis was toward achieving a potentially useful path planner for cooperating
robots with at least 6 dof each, we sacrificed completeness in exchange for the pos-
sibility (with no guarantees) of so0lving some practical problems within a reasonable
amount of computation time.

This lack of completeness was discussed earlier in Section 4.3.1 where it was
shown that the c-space traversal heuristic around which the path planner is based

can fail to find a solution even if one may exist due to one of the following scenarios:

117

118

e Cycling occurs.
e No safe point is found by the limited set of search directions.

Modifying the heuristic to guarantee finding a safe point if one exists (such
as by continually increasing the search resolution) would still not ensure complete-
ness since cycling might still occur. In addition, it was shown in Section 4.4 that
performing even one thorough search can be computationally intractable.

Many path planning algorithms such as those based on randomized searches
are probabilistically complete, meaning that given sufficient computation time they
will guarantee finding a solution if one exists. However, such algorithms offer little
practical value since they inevitably take a very long time to run for reasonably

difficult problems.

7.2 Computational Complexity

Computational complexity of this work can be analyzed by giving an upper
or a lower bound on the number of elementary computations or the size of memory
required to solve a problem. Recall from Chapter 2 that the n dof robot path
planning problem is PSPACE-hard with an upper bound complexity of O(n").

This section investigates the computational complexity of the planner in order
to determine how an increase in system dof would be expected to affect solution

time. The computational complexity of the planner can be addressed in three parts:
e Precomputations
e Mapping a c-space point.
e Performing searches

e Overall Complexity

119

These parts are discussed below.

The path planning method presented in this thesis requires no precomputa-
tions.

Consider a workspace involving an n link robot and m obstacles. Mapping a

c-space point involves the following operations:
e Updating the link model
e Checking for joint limit violations
e Checking for collisions

Both updating the link model and checking for joint limit violations have an
upper bound complexity O(n). Checking for collisions has a higher upper bound
complexity O(nm). Thus, c-space mapping computations grow linearly with both
increasing dof and number of obstacles.

The worst case complexity for performing searches will be a linear function of
the number of search directions used. For search directions computed as described
by Procedure 4 in Chapter 4, an upper bound on search complexity for an n dof
problem is O(kn—l), where & < n. For our implementation, k& = 3 for problems
with a mobility m < 9 and k& = 2 for problems with mobility m = 12.

An overall upper limit on computational complexity can be taken to be the
worst case complexity of the above three operations. Thus, the path planner pre-

sented in this thesis has an upper bound on complexity of O(kn_l), where k < n.

7.2.1 Possible Benefits of Parallel Processing

When mapping along a prescribed vector, parallel processing could be used
to map each discretized point along that vector simultaneously. Even more signifi-

cantly, the various possible search directions and even the different depths in those

120

directions could be examined simultaneously. Parallel processing could also greatly
speed the interference checking by performing multiple checks simultaneously.

A massively parallel machine, such as the Connection Machine which has
216 (or 65536) 1-bit processors, could radically decrease the execution time of the

path planner presented in this thesis.

7.3 Overall Effectiveness

Relatively few other approaches have appeared in the literature for solving the
cooperating robot path planning problem for robots with six dof each. The path
planning strategy presented in this thesis appears to be capable of solving more
difficult problems than those approaches. In addition, this thesis illustrates that
the strategy presented can be practically applied to cooperating nine dof robots.
Results in the literature for cooperating redundant robots appear to be limited to
planar manipulators. A single arm version of the planner has demonstrated the
ability to solve some practical yet potentially very difficult path planning problems
in a reasonable amount of time. Some general statements regarding the effectiveness

of the path planner follow:

e Solution times are reasonable for off-line programming (typically under 30

minutes).

e Potential problems with joint limits and multiple arm configurations are in-

herently handled.
e The planner performs well and in reasonable time even with over 100 obstacles.

e The planner is effective even for start and/or goal positions involving little

safety clearance.

CHAPTER 8

Conclusions and Future Work

This Chapter presents some conclusions on the subject of this thesis, Section 8.1,

and discusses some areas for future work, Section 8.2.

8.1 Conclusions

The general problem of planning collision free paths for an n dof robotic sys-
tems has an upper bound on complexity of O(n"). As a result, exact solutions to
the robot path planning problem will likely remain excessively computationally in-
tensive for some time. As a result, any implementation of autonomous robotic path
planning which is likely to prove successful in the near future will probably involve
some simplifying assumptions, shortcuts, or heuristics. While any inexact solution
may fail for some cases, the advantage of this type of approach is that a solution
may be found for many practical yet potentially difficult path planning problems
with a reasonable amount of computation.

This thesis addressed the problem of planning feasible and obstacle-avoiding
paths for two spatial robots working cooperatively in a known static environment.
Because of the apparent impracticality of developing a general and complete path
planning strategy, the main emphasis of this work involved developing a heuristic
based path planner for cooperating robots which sacrifices completene s in exchange
for a hope of finding a solution in a reasonable amount of time. The path planning
approach presented in this thesis is configuration space (c-space) based and performs
selective rather than exhaustive c-space mapping. A novel, divide-and-conquer type
of heuristic is used to guide the selective mapping process. Also, a configuration
space based algorithm was presented to modify any feasible path found by the

planner into a more efficient one.

122

Although the path planner cannot guarantee finding a solution even if one ex-
ists, and in spite of its O(k™ ™~ 1) complexity for n degree of freedom problems (where
k = 2 or 3 as implemented), it has demonstrated the ability to solve a variety of
practical yet potentially difficult path planning problems with a reasonable amount
of computation. This thesis presented the implementation details and illustrated
sample results for the following four cases: single six dof (6R) robot, single nine dof
(1P-8R) robot, cooperating six dof (6R) robots, and cooperating nine dof (1P-8R)
robots. The path planning program typically requires under 10 minutes to execute
for cooperating six dof robots and under 30 minutes to execute for cooperating nine
dof robots. The planner appears to perform better than other cooperating robot
path planners in the literature.

Some specific advantages and disadvantages of the path planning technique

presented in this thesis are discussed below.

8.1.1 Advantages

1. The planner utilizes selective (non-exhaustive) mapping of c-space thus making

it possible to get solutions in a reasonable amount of time.

2. The planner is global in nature but has provision for local navigation around

obstacles.

3. The approach is completely general and would, in theory, be applicable to any
system of arbitrary dimension. The approach is also independent of the type
of geometric representation employed, so long as the chosen representation

enables mapping of c-space points on an as-needed basis.

4. Unsafe space is handled in the same manor regardless of the reason for it being

unsafe (such as various possible collisions or joint limit violations).

123
5. The approach could be applied to either single robot or cooperating robot
path planning problems.

6. Robot degeneracy is not a concern for single arm problems and is inherently

handled for the cooperating arm scenario (see Chapter 5).

While the resulting path is generally sub-optimal, it should be feasible to

.\l

“tighten up” on any safe path to obtain a shorter one (Chapter 5.3).

8. The potential speed of the collision detection is enhanced by the fact that the
method simply needs a yes or a no regarding collisions and does not require

distance or direction information.

9. Cooperating redundant robot path planning problems may be handled without

requiring use of inverse kinematics for a redundant robot.

10. The bulk of the calculations are such that they could be done in parallel (see

Section T.2).

11. Implementation of the path planner is relatively straightforward and easy.

8.1.2 Disadvantages

1. The planner is heuristic in nature and is not complete, i.e., it cannot guarantee
finding a solution even if one may exist. Other approaches which are complete
are computationally impractical for reasonably difficult yet practical problems

for more than a few dof.
2. Joint angles at the start and goal configurations are required to be specified.

3. There is presently no means to determine that a solution exists other than to

find one.

124

4. The number of strategy directions required to achieve an effective search in-
crease exponentially with dimensionality. This effect may be partially offset
by the fact that there may be more acceptable solutions to systems of higher

dimensionality making it easier to find one of them.
5. The resulting path may be longer than necessary even after being shortened.

6. The planner cannot be directly applied to cases with dynamic obstacles.

8.2 Future Work

Some potential areas of future work include:

¢ Improvement to String Tightening Process
o Integration with the CIRSSE Geometric State Manager
e Utilization of Parallel Processing

o Guaranteeing Completeness

These areas of potential future work are discussed below.

8.2.1 Improvement to String Tightening Process

As discussed in Section 5.3.2.2, the string tightening algorithm presented
herein has the disadvantage of vielding paths which very nearly involve collision.

This issue could be addressed as part of future work by one of the following means:

¢ Expanding the obstacles so that paths with very little clearance in the model
actually provide sufficient clearance. This is not a feasible option when the

only safe path involves tight clearances.

e Modifying the cost function (Equation 5.5) to include a penalty for proximity
to obstacles and considering knot point movement in any direction orthogonal

to the segment between the preceding and following knot points.

125

¢ Implementing an alternate approach to string tightening, such as a poten-
tial fields approach similar to that discussed in Section 5.3.1. This is a very
promising approach since the local minima problem can be effectively elimi-
nated since the path planner provides the potential fields based path smoother

with a feasible solution to the global path planning problem.

8.2.2 Integration with the CIRSSE Geometric State Manager

The path planner could be integrated with the CIRSSE Geometric State Man-
ager (GSM) [102]. The purpose of the GSM is to maintain a time-varying geometric
model of the CIRSSE robots and their environment. Once the path planner is in-
tegrated with the GSM, the planner could automatically obtain the current robot
and obstacle information from the GSM when a testbed task determines the need

to utilize the path planner.

8.2.3 Utilization of Parallel Processing

The path planning programs are currently implemented using serial coding.
As such, the path planning program typically requires under 5 minutes to execute for
cooperating six dof robots and under 30 minutes to execute for cooperating nine dof
robots. The algorithm being used is ideally suited for parallel processing since each
search involves a large number of independent calculations. Implementing the path
planning program in parallel could drastically reduce the path planning program

execution time.

8.2.4 Guaranteeing Completeness

As discussed earlier, a complete solution to the cooperating spatial robot path
planning problem appear to be impractical at this time. Nonetheless, it might be

possible to modify the c-space heuristic in such a way as to guarantee completeness.

e

126

At present, the usefulness of such an modification is at best questionable. However,

advances in both the path planning and computer fields might warrant a second

look at the completeness issue sometime in the future.

8.2.5 Decidability

At this time, there does not appear to be an easy answer to the question as to
the existence of a solution to a given general path planning problem. Future research
advances may make it possible to quickly determine whether or not a solution will

exist.

LITERATURE CITED

(1] Reif, John H. Complexity of the Mover’s Problem and Generalizations
Extended Abstract. In Proceedings of the 20th Annual IEEE Conference on
Foundations of Computer Science, pages 421-427, 1979.

[2] Schwartz, J.T. and M. Sharir. On the 'Piano Movers’ Problem II. General
Techniques for Computing Topological Properties of Real Algebraic
Manifolds. Computer Science Technical Report No. {1, February 1982.
Courant Institute, New York University.

(3] Canny, J.F. The complexity of robot motion planning. MIT Press, 1988.

[4] Dooley, J.R. and J.M. McCarthy. Parameterized Descriptions of the Joint
Space Obstacles for a SR Closed Chain Robot. In Proceedings of the IEEE
International Conference on Robotics and Automation, pages 1536-1541,
1990. Vol. 3.

[5] Dupont, Pierre E. Planning Collision-Free Paths for Kinematically
Redundant Robots by Selectively Mapping Configuration Space. PhD thesis,
Rensselaer Polytechnic Institute, Troy, NY, 1988.

[6] Schima, Francis J. Two Arm Robot Path Planning in a Static Environment
Using Polytopes and String Stretching. Master’s thesis, Rensselaer
Polytechnic Institute, Troy, NY, 1990.

[7) CimStation User's Manual, CimStation 4.3. Silma Inc., Cupertion, CA, 1992.

[8] Akman, Varol. Shortest Paths Avoiding Polyhedral Obstacles in
3-Dimensional Euclidian Space. PhD thesis, Rensselaer Polytechnic
Institute, Troy, NY, June 1985.

[9] Andresen, F.P. Visual Algorithms for Autonomous Navigation. In
Proceedings of the IEEE International Conference on Robotics and
Automation, pages 856-861, St. Louis, MO, March 1985.

[10] Brooks, Rodney A. and Tomas Lozano-Perez. A Subdivision Algorithm in
Configuration Space for Findpath with Rotation. In /EEE Transactions on
Systems, Man, and Cybernetics, pages 224-233, March/April 1985. Vol.
SMC-15, No. 2.

[11] Brooks, Rodney A. Solving the Findpath Problem by Good Representation
of Free Space. In IEEFE Transactions on Systems, Man, and Cybernetics,
pages 190-197, March/April 1983. Vol. SMC-13, No. 3.

127

128

[12] Brooks, Rodney A. Planning Collision-Free Motions for Pick-and-Place
Operations. International Journal of Robotics Research, 1983, Vol. 2, No. 4,
pp 19-44. Winter.

[13] Canny, J.F. and M.C. Lin. An opportunistic global path planner. In
Proceedings of the IEEE International Conference on Robotics and
Automation, pages 1554-1559, 1990.

(14] R.T. Chien, Ling Zhang and Bo Zhang. Planning Collision-Free Paths for
Robotic Arm Among Obstacles. In IEEE Transactions on Pattern Analysis
and Machine Intelligence, January 1984. Vol. PAMI-6, No. 1.

[15] Donald, Bruce R. Hypothesizing Channels Through Free-Space in Solving
the Findpath Problem. In MIT A.I. Memo No. 736, June 1983.

(16] Donald, Bruce R. On Motion Planning With Six Degrees of Freedom:
Solving the Intersection Problem in Configuration Space. In Proceedings of

the IEEE International Conference on Robotics and Automation, pages
536-541, St. Louis, MO, March 1985.

(17] Faverjon, Bernard. Object Level Programming of Industrial Robots. In
Proceedings of the IEEFE International Conference on Robotics and
Automation, pages 1403-1411, 1986. Vol. 3.

(18] Faverjon, Bernard. Obstacle Avoidance Using an Octree in the
Configuration Space of the Manipulator. In Proceedings of International
Conference on Robotics, pages 504-512, Atlanta, GA, March 1984.

[19] Gouzenes, Laurent. Strategies for Solving Collision-Free Trajectories
Problems for Mobile and Manipulator Robots. International Journal of
Robotics Research, 1984, Vol. 3, No. 4, pp 51-65. Winter.

[20] Hasegawa, Tsutomu. Collision Avoidance Using Characterized Description of
Free Space. ‘85 ICAR, 1985, pages 69-76.

(21] Kambhampati, S. and L.S. Davis. Multi-Resolution Path Planning for
Mobile Robots. IEEE Journal of Robotics and Automation, September 1986,
Vol. RA-2, No. 3, pp 135-145.

[22] D.T. Kuan, J.C. Zamiska and R.A. Brooks. Natural Decomposition of Free
Space for Path Planning. In IEEFE International Conference on Robotics and
Automation, pages 168-173, St. Louis, MO, March 1985.

[23] Laugier, C. and F. Germain. An Adaptive Collision-Free Trajectory Planner.
‘85 ICAR, 1985, pages 33-41.

129

[24] Lozano-Perez, T. Spatial Reasoning in the Planning of Robot Motions.
Proceedings of the 1981 Joint Automatic Control Conference, June 1981,
pages WP-2D.

[25] Lozano-Perez, T. Spatial Planning: A Configuration Space Approach. IEEE
Transactions on Computers, February 1983, Vol. C-32, No. 2, pp 108-120.

[26] Lozano-Perez, Tomas. A Simple Motion Planning Algorithm for General
Robot Manipulators. [EEE Journal of Robotics and Automation, June 1987,
Vol. RA-3, No. 3, pp 224-238.

[27] Park, W.T. State Space Representations for Coordination of Multiple
Manipulators. Proceedings 14th International Symposium on Industrial
Robots, 7th International Conference on Industrial Robot Technology,

October 1984, pages 397-405.

[28] Red, W.E. Configuration Maps for Robot Task Planning in 3-D. Computers
in Engineering 1984, 1984, pages 115-124.

[29] Udupa, S. Collision Detection and Avoidance in Computer Controlled
Manipulators. Ph.D. Dissertation, Department of Electrical Engineering,
California Institute of Technology, 1977.

[30] Wong, E.K. and K.S. Fu. A Heirarchical-Orthogonal Space Approach to
Collision-Free Path Planning. Proceedings of the IEEE International
Conference on Robotics and Automation, March 1985, pages 506-511. St.
Louis, MO.

[31] Dittenberger, Kurt. Graph Decomposition and Retraction: An Approach to
Collision-Free Path Planning. PhD thesis, Rensselaer Polytechnic Institute,
1990.

(32] Sharir, Micha. Algorithmic Motion Planning in Robotics. IEEE Symposium
on Robotics and Automation, 1989, pages 9-19.

[33] Lozano-Perez, T. and M. Wesley. An Algorithm for Planning Collision Free
Paths Among Polyhedral Objects. Comm. ACM, 1979, Vol. 22, pp 560-570.

[34] T.H. Cormen, C.E. Leiserson and R.I. Rivest. Introduction to Algorithms.
McGraw-Hill Book Company, New York, New York, 1990.

[35) Branicky, M.S. and W.S. Newman. Rapid Computation of Configuration
Obstacles. In Proceedings of the IEEE International Conference on Robotics
and Automation, pages 304-310, 1990.

(36] Paden, B., A. Mees, and M. Fisher. Path planning using a Jacobian-based
freespace generation algorithm. In Proceedings of the IEEE International
Conference on Robotics and Automation, pages 1732-1737, 1989.

[37]

(38]

[39]

[40]

(41]

42]

[43]

[44]

[45]

[46]

[47]

48]

130

Kondo, K. Motion planning with six degrees of freedom by multstrategic

bidirectional heuristic free-space enumeration. In IEEE Transactions on
Robotics and Automation, pages 267-277, June 1991. Vol. 7, No. 3.

Chen, Pang C. and Yong K. Hwang. SANDROS: A motion planner with
performance proportional to task difficulty. In Proceedings of the IEEE
International Conference on Robotics and Automation, pages 2346-2353,
Nice, France, May 1992.

Herman, Martin. Fast, Three-Dimensional Collision-Free Motion Planning.
In Proceedings of the IEEE International Conference on Robotics and
Automation, pages 1056-1063, 1986. Vol. 2.

Herman, Martin. Fast Path Planning in Unstructured, Dynamic, 3-D
Worlds. unpubi ed manuscript, Robot Systems Division, National Bureau
of Standards, J:. uary, 1986.

Lee, B.H. and Y.P. Chien. Time-Varying Obstacle Avoidance for Robot
Manipulators Approaches and Difficulties. In Proceedings of the IEEE
International Conference on Robotics and Automation, pages 1610-1615,
1987. Vol. 3.

Lee, B.H. and Y.P. Chien. Time-Varying Obstacle Avoidance for Robot
Manipulators: Approaches and Difficulties. Proceedings of the IEEE
International Conference on Robotics and Automation, 1987, Vol. 3, pp
1610-1615.

Gupta, Kamal Kant. Fast Collision Avoidance for Manipulator Arms: A
Sequential Search Strategy. In Proceedings of the IEEE International
Conference on Robotics and Automation, pages 1724-1729, 1990.

Lewis, R.A. Autonomous Manipulation of a Robot: Summary of

Manipulator Software Functions. Jet Propulsion Laboratory Technical
Memorandum 33-679, March 15 1974.

Pieper, D. The Kinematics of Manipulators Under Computer Control. PhD
thesis, Stanford University, 1969.

Glavina, Bernhard. Solving findpath by combination of goal-directed and
ranuornized search. In Proceedings of the IEEE International Conference on
Robotics and Automation, pages 1718-1723, 1990.

Yap, Chee-Keng. How to Move a Chair Through a Door. IEEE Journal of
Robotics and Automation, June 1987, Vol. RA-3, No. 3, pp 172-181.

Rovetta, Alberto and Remo Sala. Robot motion planning with parallel
systems. In Proceedings of the IEEE International Conference on Robotics
and Automation, pages 2224-2229 Nice, France. May 1992.

(49]

[50]

[51]

[54]

[55]

[56]

[60]

131

Brooks, R.A. Solving the find-path problem by good representation of free
space. In IEEE Transactions on Systems, Man, and Cybernetics, pages
190-197, March/April 1983. Vol. SMC-13, No. 2.

Canny, John. A Voronoi Method for the Piano Movers Problem. In

Proceedings of the IEEE International Conference on Robotics and
Automation, pages 530-535, St. Louis, MO, March 1985.

Donald, Bruce R. Motion Planning with six degrees of freedom. In MIT AL
Memo No. 791, 1984.

Lumelsky, Vladimir J. and K. Sun. Gross Motion Planning for a Simple 3-D
Articulated Robot Arm Moving Amidst Unknown and Arbitrarily Shaped
Objects. Proceedings of the IEEE International Conference on Robotics and
Automation, 1987, Vol. 3. pp 1929-1934.

Lumelsky, Vladimir J. and A. Stepanov. Path Planning Strategies for a
Traveling Automaton in an Environment with Uncertainty. Center for
Systems Science Technical Report No. 8504, Electrical Engineering, Yale
University, April 1985.

Lumelsky, Vladimir J. On Dynamic Path Planning for a Planar Robot Arm.
Center for Systems Science Technical Report No. 8505, Electrical
Engineering, Yale University, April 1985.

Lumelsky, Vladimir J. Continuos Motion Planning in Unknown Environment
for a 3-D Cartesian Robot. Proceedings of the IEEE International
Conference on Robotics and Automation, 1986, Vol. 3, pp 1050-1055.

Lumelsky, Vladimir J. Effect of Kinematics on Motion Planning for Planar
Robot Arms moving Amidst Unknown Obstacles. IEEE Journal of Robotics
and Automation, June 1987, Vol. RA-3, No. 3, pp 207-223.

Petrov, A.A. and 1.M. Sirota. Obstacle Avoidance by a Robot Manipulator
Under Limited Information About the Environment. Automatic Remote
Control, April 1983, Vol. 44, No. 4, pp 431-440.

Warren, C.W. Visual Algorithms for Autonomous Navigation. In
Proceedings of the IEEE International Conference on Robotics and
Automation, pages 1021-1026, Sacramento, CA, April 1991.

Lee, C.T. and P.C.Y.Sheu. A Divide-and-Conquer Approach with Heuristics
of Motion Planning for a Cartesian Manipulator. In IEEE Transactions on
Systems, Man, and Cybernetics, pages 929-944, September/October 1992.
Vol. SMC-15, No. 2.

Koichi Kondo, et al. Motion Planning in Plant CAD Systems. Toshiba Corp.
ME R&D Center, 4-1. Kanagawa Pref. 210, Japan.

132

[61] Khatib, O. and J.F. Lemaitre. Dynamic Control of Manipulators Operating

[62]

[63]

[64]

(65]

[66]

[67]

[68]

[69]
[70]

[711]

[72]

73]

in a Complex Environment. 3d CISM IFToMM Symposium on Theory and
Practice of Robot Manipulators, September 1978.

Hogan, N. Impedance Control: An approach to Manipulation. In ASME
Transactions on Dynamic Systems, Measurement, and Control, volume 107,
pages 1-24, March 1985.

Khosla, P. and R. Volpe. Superquadric artificial potentials for obstacle
avoidance and approach. In Proceedings of the IEEE International
Conference on Robotics and Automation, pages 1778-1784, 1988.

Okutomi, M. and M. Mori. Decision of robot movement by means of a
potential field. In Advanced Robotics, volume 1, pages 131-141, 1986.

Warren, Charles W. Global Path Planning Using Artificial Potential Fields.
In IEEE International Conference on Robotics and Automation, pages
316-321, 1989.

Hirukawa, H. and S. Kitamura. A Collision Avoidance Algorithm for Robot
Manipulators Using the Potential Method and Safety First Graph. In
Japan-U.S5.A. Symposium on Flerible Automation, pages 99-102.

Aerospace, Martin Marietta Denver. Phase I - Intelligent Task Automation.
Air Force Wright Aeronautical Laboratories, Technical Report
AFWAL-TR-85-4062, Vol. 3, pp. 194-208, 214-215, April 1986.

Meyers, J.K and G.J. Agin. A Supervisory Collision Avoidance System for
Robot Controllers. Robotics Research and Advanced Applications, 1983,
pages 225-232. W.J. Book, editor, ASME, New York, NY.

Myers, J.K. Multi-Arm Collision Avoidance Using a Potential Field
Approach. SRI International, Menlo Park, CA, 1983.

Munger, Rolfe. Path Planning for Assembly of Strut-Based Structures.
Master’s thesis, Rensselaer Polytechnic Institute, Troy, NY, May 1991.

Warren, C.W. et al. An approach to manipulator path planning.
International Journal of Robotics Research, October 1989, Vol. 8, No. 5, pp
87-95.

Warren, C.W. A vector based approach to robot path planning. In
Proceedings of the IEEFE International Conference on Robotics and
Automation, April 1991. Sacramento, CA.

Kim, Jin-Oh. Real-Time Obstacle Avoidance Using Harmonic Potential

Functions. In IEEE Transactions on Robotics and Automation, pages
338-349, June 1992. Vol. 8, No. 3.

[74]

[75]

[76]

[77]

(78]

[79]

(80]

133

Krogh, B.H. A generalized potential field approach to obstacle avoidance
control. In Proceedings SME Conference on Robotics Research, Bethlehem,
PA, August 1984.

Burns, C.I. Connolly J.B. and R. Weiss. Path lanning using Laplace’s
equation. In Proceedings of the IEEE [nternational Conference on Robotics
and Automation, pages 2102-2106, Cincinatti, OH, May 1990.

Rimon, E. and D.E. Koditschek. Exact robot navigation using artificial
potential fields. In /EEE Transactions on Robotics and Automation, pages
501-518, October 1992. Vol. 8, No. 5.

Faverjon, B. and P. Tournassoud. A Local Approach for Path Planning of
Manipulators with a High Number of Degrees of Freedom. In Proceedings of
the IEEE International Conference on Robotics and Automation, pages
1152-1159, 1987.

Barraquand, Jerome and Jean-Claude Latombe. A Monte-Carlo Algorithm
for Path Planning With Many Degrees of Freedom. In Proceedings of the
IEEE International Conference on Robotics and Automation, page 1712,
1990. Vol. 3.

Lozano-Perez, T. et al. Task-Level Planning of Pick-and-Place Robot
Motions. Computer, 1989, Vol. 22, No. 3..

Derby, Stephen J. Rinematic Elasto-Dynamic Analysis and Computer
Graphics Simulation of General Purpose Manipulators. PhD thesis,
Rensselaer Polytechnic Institute, Troy, NY, 1982.

Hornick, M.L. and B. Ravani. Computer-Aided Off-Line Programming of
Robot Motion. International Journal of Robotics Research, 1986, Vol. 4, No.
4,. Winter.

Stobart, R.K. Geometric Tools for the Off-Line Programming of Robots.
Robotica, 1987, Vol. 5, pp 273-280.

Han, D. et al. Computer-aided off-line planning of robot motion. Robotics
and Autonomous Systems, 1991, Vol. 7, pp 67-72.

Weisbin, C.R. and M.D. Montemerlo. NASA’s telerobotics research program.
In Proceedings of the IEEE [nternational Conference on Robotics and
Automation, pages 2653-2666, Nice, France, May 1992.

Chien, Yung-Ping and Qing Xue. Path planning for two planar robots
moving in unknown environment. In IEEE Transactions on Systems, Man,
and Cybernetics, pages 307-317, March/April 1992. Vol. SMC-22, No. 2.

[86]

[87]

[88]

[89]

[90]

[91]

(93]

[94]

[95]

134

Koga, Yoshihito and Jean-Claude Latombe. Experiments in Dual-Arm
manipulation planning. In Proceedings of the IEEE International Conference
on Robotics and Automation, pages 2238-2245, Nice, France, May 1992. Vol.
3.

Seereeram, Sanjeev and John T. Wen. A global approach to path planning
for redundant manipulators. In Proceedings of the 1992 Regional Control
Conference, pages 101-104, Brooklyn, NY, 1992.

Lim, Joonhong and Dong H. Chyung. Admissible Trajectory Determination
for Two Cooperating Robot Arms. Robotica, 1988, Vol. 6, pp 107-113.

Hu, Yan-Ru and Andrew A. Goldenberg. Dynamic control of multple
coordinated redundant robots. In JEEE Transactions on Systems, Man, and
Cybernetics, pages 563-574, May/June 1992. Vol. SMC-22, No. 3.

Bodduluri, Radhika Mohan. Design and Planned Movement of Multi-Degree
of Freedom Spatial Mechanisms. PhD thesis, University of California, Irvine,
1990.

Chen, Jau-Liang and Joseph Duffy. Path Generation for Two Cooperative
Puma Robots. In Robotics, Spatial Mechanisms, and Mechanical Systems,
ASME, volume DE-45, pages 195-201, 1992.

McKerrow, P.J. Introduction to Robotics. Addison-Wesley, Reading, MA,
1991.

Hwang, Y.K. and Narendra Ahuja. Gross Motion Planning - A Aurvey.
ACM Computing Surveys, September 1992, Vol. 24, No. 3, pp 219-291.

Fu, K. §., R.C. Gonzalez, and C. S. G. Lee. Robotics: Control, Sensing,
Vision, and Intelligence. McGraw-Hill Book Company, New York, New
York, 1987.

J.E. Bobrow, S. Dubowsky and J.S. Gibson. Time-Optimal Control of
Robotic Manipulators Along Specified Paths. International Journal of
Robotics Research, 1985, Vol. 4, No. 3, pp 3-17. Fall.

Bryson, A.E. Jr. and Y.C. Ho. Applied Optimal Control. Hemisphere
Publishing, Washington, D.C., 1975.

Thorpe, C.E. Path Relaxation: Path Planning for a Mobile Robot.
CMU-RI, TR-84-5, 1984.

A Representation Scheme for Rapid 3-D Collision Detection. CIRSSE
Document No. 9, 1988.

135

[99] Hamlin, G.J. and R.B. Kelley. Efficient Distance Calculation using the
Spherically-Extended Polytope (S-tope) Model. In Proceedings of the IEEE
International Conference on Robotics and Automation, pages 2502-2507,
Nice, France, May 1992. Vol. 3.

[100] Hron, Anna B. Graphical Interface Between the Cirsse Testbed and
Cimstation with MCS/CTOS. Master’s thesis, Rensselaer Polytechnic
Institute, Troy, NY, 1992.

[101] Testbed Kinematic Frames and Routines. CIRSSE Technical Memo No. 1,
March 1991.

[102] The Geometric State Manager. CIRSSE Technical Memo No. 21, December
1992.

Mo

APPENDIX A
CIRSSE Testbed Kinematic Frames

This appendix describes the CIRSSE Testbed kinematic frames and the joint limits.
The first section describes how the coordinate frames are assigned and num-
bered. Section 2 defines the pose names. For reading ease, angular data presented

in this appendix is given in units of degrees.

A.1 Coordinate Frames

This section describes the conventions related to the coordinate frame assign-
ments for the 18-DOF Testbed. This section includes a set of standard labels for
the coordinate frames and numbers for the joints. The joint ranges implied by the

coordinate frame assignment are also given.

A.1.1 Assignment/Labeling of Frames

The consistent numbering of the joints in the Testbed results in a convention
for referring to the joints by a standard set of labels. The designed convention
specifies one uniform assignment of the coordinate frames, whereby each frame is
assoclated with a single joint and each joint is associated with a single frame, (i.e.,
there are no redundant frames). Although the frame assignments and their asso-
ciation with the joints are unique, there are two different ways to number each
frame/joint. This results in two different sets of frame/joint labels: one to account
for an 18-DOF experiment, and one to account for a 9-DOF experiment.

The assignment of frame 0, i.e., the global origin, is made on top of the back
platform rail in the middle of its length. The positive r-axis of this frame points

towards the other platform rail, the positive y-axis points to the right of the Testbed,

and the positive z-axis points towards the ceiling. Scribe marks will be placed on

136

137

the b..ck rail to indicate this coordinate frame’s origin, positive z-axis, and positive
y-axis.

The coordinate frame numbering starts with the left cart, continues through
the left PUMA, and then includes the right cart and right PUMA. The coordinate
frames associated with the PUMA joints are ordered in the standard way. During
an 18-DOF experiment, the frame/joint labels G, through G,s are used sequentially
in the manner just described (G indicates global). During a 6- or 9-DOF experiment,
the frame, joint labels are L; through Lg, or R; through Re, depending on whether the
left or right PUMA+-cart is used, respectively. Note, there is no reduced classifica-
tion of the frame labels beyond those for a single PUMA+cart. Thus, a PUMA only
experiment will use joints numbered L, through Lg or Ry through Re. The following
table summarizes the numbering and labeling of the coordinate frames, and gives

the hardware joint limits for the PUMA (rounded to the nearest degree).

138

frame name of global | local physical limit
number associated axis label | label associated joint
0 n/a Go Lo, Ro | n/a
1 left cart linear Gy L, (—1.3716, 0.6096) m
2 left cart rotate G2 L, | (—150, 150) degs
3 left cart tilt G3 Ls (—45, 45) degs
4 left PUMA shoulder G4 Ly | (—256, 79) degs
5 left PUMA upper-arm Gs Ls | (—221%, 40") degs
6 left PUMA fore-arm Gs Le | (—60, 246) degs
7 left PUMA wrist G- Ly | (=126, 150*) degs
8 left PUMA flange tilt Gs Ls (—100, 100) degs
9 left PUMA flange rotate G Lo | (=290, 2907) degs
10 right cart linear Gio R (—0.6096, 1.3716) m
11 right cart rotate G1 R, (—150, 150) degs
12 right cart tilt Gi2 Ry | (—45, 45) degs
13 right PUMA shoulder Gia Ry | (—253, 83) degs
14 right PUMA upper-arm Gyg Rs | (—221%, 43") degs
15 right PUMA fore-arm Gis Re | (=60, 243) degs
16 right PUMA wrist Gie R | (=134, 153") degs
17 | right PUMA flange tilt Gir | Rs | (=100, 100) degs
18 right PUMA flange rotate | G5 Ro | (—2907, 290%) degs

The numbers marked with * indicate those limits which are not the mechanical

limits of the joint but the encoder limits. In either case, a hardware limit has been

reached. Beyond an encoder limit, the encoder count exceeds the storage capacity

of a ‘C’ short, causing a sign change in the encoder value. This would have serious

repercussions for any real-time control code.

139

The coordinate frame assignment follows a Modified Denavit-Hartenberg for-
mulation, whereby the i** frame is attached to the ith link and has its origin on the
ith joint axis, (ref., Craig, J. J., “Introduction to Robotics Mechanics and Control,”
Addison-Wesley, 1986, Chapter 3). Note that motion of a given joint throughout its
entire range does not guarantee lack of collisions; this is particularly true with the
linear joints of the carts.

Two figures attached to the end of this memorandum illustrate the coordinate
frame assignment. Figure A.1 shows all 18 coordinate frames and joints for the carts
and PUMAs. Figure A.2 shows a closer view of the coordinate frames for the left
PUMA +cart.

The kinematic parameters for one of the PUMA+cart pairs are given in the
following table. Entries preceded by an asterisk indicate the currently accepted

approximate values which may change at a later date.

frame a;_1 a;_y d; 9,
number, 2 (m) (m)
1 —90° | *0.32000 Q1 0°

Q]

90° | 0.00000 | *0.54400 | ¢2

3 —90° | 0.00000 | 0.00000 | g
4 90° | 0.00000 | *0.82800 | g4
5 —90° | 0.00000 | 0.24300 | gs
6 0° | 0.43182 | -0.09391 | ge
7 90° | -0.02031 | 0.43300 | ¢
8 —90° | 0.00000 | 0.00000 | g
9 90° | 0.00000 | 0.00000 | g

Note that frames 7. 8. and 9 have co-located origins. Specifically, the last

frame is not located at the flange of the PUMA’s wrist. Numerical detail for the

140

transformation from frame 9 to the gripper frame have not as yet been determined.
HOME positions have been defined for the MCS for the PUMAs. This position
corresponds to all zero joint values, and is shown in Figures A.1 and A.2. This

position, because of the alignment of two the wrist joint axes, is singular.

A.2 Software Joint Limits for the PUMAs

While the hardware joint limits describe the range of motion physically per-
mitted, it is not possible to utilize this entire range. For example, path planners may
require additional restrictions to provide safe motion. The following table lists the
recommended joint limits for the testbed. These values are based on the hardware
joint limits with consideration given to the link size and range, and a safety region
(nominally 5 degrees, except it is 6 degrees for a joint able to reach its encoder

limit).

141

frame name of global | local software range of
number associated axis label | label associated joint
0 n/a Go |Lo.Ro|nfa
1 left cart linear Gy L, | (=1.3716, 0.6096) m
2 left cart rotate G2 L, | (=150, 150) degs
3 left cart tilt G3 Ly | (—45, 45) degs
4 left PUMA shoulder Gy Ly | (=251, 74) degs
5 left PUMA upper-arm Gs Ls | (—215, 34) degs
6 left PUMA fore-arm Gg L (=55, 241) degs
7 left PUMA wrist G7 Ly | (=121, 144) degs
8 left PUMA flange tilt Gs Ls | (=95, 95) degs
9 left PUMA flange rotate G Ly | (—284, 284) degs
10 | right cart linear Go | Ry | (—0.6096, 1.3716) m
11 right cart rotate G Ry, | (=150, 150) degs
12 right cart tilt Gi2 Rz | (—45, 45) degs
13 right PUMA shoulder Gi3 Ry | (—248, 78) degs
14 right PUMA upper-arm Gy Rs | (=215, 37) degs
15 right PUMA fore-arm Gis Re | (—55, 238) degs
16 right PUMA wrist Gie Ry (=129, 148) degs
17 right PUMA flange tilt G- Rg | (—95, 95) degs
18 right PUMA flange rotate | Gis Rg (—284, 284) degs

The information in the joint limit tables should be used in the following man-

ner:

e Trajectory generators, controllers, path planners, etc, should use the software

joint limits for specifying the manipulator motion ranges.

142

o The low level protection code in the robo channel driver 5uld use hardware

joint limits.

This usage permits a consistent specification of manipulator motions and provides
two levels of protection against reaching the joint limits: the channel drivers will
disable a joint only when the physical limit is threatened: higher level software will
never request a joint move to these limits. It is expected that the channel drivers

will also include a 3 degree limit on these values to ensure safety.

A.3 Pc Names

In g ieral, thrr .0se variables, each with two values, are needed to select
the desired solution fr .n the eight possible solutions of a PUMA inverse kinematic
problem. Selection of the pose definitions was a trade-off between easy visualization
of the pose by human analogy and ease of computation. The labels to be used for
the PUMA poses and their definitions are summarized in the table below—joint

variables referenced are those for the left PUMA.

pose name joint range

right | finres(94,95,¢6) < 0
left finres(94, 95,¢6) > 0

flex gs < 92.6864°
noflex ge > 92.6864°

flip gs < 0°
noflip gs > 0°

Standing on the PUM * base and looking straight at its wrist, the shoulder
link of the PUMA willbe o her the left or right side of your body, corresponding

to the left or right configi. .on, respectively. It is important to only consider the

143

location of the PUMA’s wrist coordinate frame, and not the flange of its last joint or
any tool that might be attached to the wrist. The computation involves joints 4, 3,
and 6. The PUMA is in the left configuration when it is in the HOME position, (as
shown in Figures A.1 and A.2). With the other PUMA joints remaining stationary,
this configuration variable changes when either gs or gs move to cause the wrist to
pass over the “head” of the PUMA. When the wrist is directly above the PUMA,
the robot is neither in the left or right configuration.

Consider, now, that the PUMA is in the left configuration. When the value
of the elbow angle, i.e., ge, is 92.6864°, the fore-arm and upper-arm align to make
the PUMA stretched. In this position, the PUMA is neither in the flex or noflex
configuration. As the fore-arm is drawn towards the top of the upper-arm by chang-
ing the elbow angle, i.e., the motion achievable with the unbroken human arm, the
PUMA enters the flex configuration (so named since this motion mimics a human
flexing his/her arm). Conversely, the PUMA is in the noflex configuration if the
elbow angle is changed in the other direction. This analogy is reversed when the
PUMA is in the right configuration. In this case, the orientation of the fore-arm
and upper-arm unlikely for humans is the flex configuration.

The last pose label deals with the PUMA’s wrist orientation. Because of the
construction of the PUMA wrist, there is no human analogy to this redundancy. A
piece of tape will be placed on the PUMA’s wrist near the axis of ¢gs. When gg is
such that the flange of the PUMA’s wrist overlaps the tape, then the PUMA will

be in the no flip configuration.

144

Coordinate Frame Assignments

Figure A.1:

145

Figure A.2: Left Half Coordinate Frame Assignments

APPENDIX B

Data for Examples Presented in Thesis

This Appendix provides the task and obstacle descriptions for the examples pre-
sented earlier in Chapter 6. The task description has the form of start and goal
joint angles. Revolute joints are measured in degrees and prismatic joints are mea-
sured in mm. The obstacle descriptions have the following format with dimensions

in mm:

/ obstacle no. / number of points / polytope radius / origin of reference frame
(X,Y,2) / (X,Y,Z) of first point / --- / (X,Y,Z) of last point /
Solution times and other solution parameters were presented earlier in Chap-

ter 6.

The point coordinates are in local coordinates. The obstacle reference frames
have the same orientation as the world reference frame. The world reference frame

and the robot joint angle definitions are defined in [101].

B.1 Data for Examples 1 and 2

Examples 1 and 2 are identical except that the lower three joints remain fixed
for Example 1 but are allowed to move for Example 2. The start and goal joint
angles for these examples are:
©®¢ = (0,0,0,16.03, —148.79, — £.35.0.00, —22.86, 106.03) and
©f = (0,0,0, -184.37, -158.90, 20.22,0.00, —41.32, 265.63), respectively. The eight
obstacles are as follows:

/1/2/40 / (1000,-100,800) / (200,0,0) / (-200,0,0) /

/2/2 /40 / (1000, -100, 800) / (200, 0, 0) / (0, 0, 346) /

146

147

/3 /2 /40 / (1000, -100, 800) / (-200, 0, 0) / (0, 0, 346) /

/4/8/0/ (500,600, 1250) / (100, 100, 0) / (-100, 100, 0) / (-100, -100, 0) /
(100, -100, 0) / (100, 100, 200) / (-100, 100, 200) / (-100, -100, 200) /

(100, -100, 200) /

/5/8/0/(-200, 200, 1000) / (-100, -100, 0) / (-100, 100, 0) / (100, 100, 0) /
(100, -100, 0) / (-100, -100, 100) / (-100, 100, 100) / (100, 100, 100) /

(100, -100, 100) /

/6 /8 /0 / (-350, 200, 800) / (-50, -100, 0) / (-50, 100, 0) / (50, 100, 0) /
(50, -100, 0) / (-50, -100, 300) / (-50, 100, 300) / (50, 100, 300) / (50, -100, 300) /
/7/8/0/ (-50, 200, 800) / (-50, -100, 0) / (-50, 100, 0) / (50, 100, 0) /

(50, -100, 0) / (-50, -100, 300) / (-50, 100, 300) / (50, 100, 300) / (50, -100, 300) /
/8/8/0/(-200, 200, 800) / (-100, -100, 0) / (-100, 100, 0) / (100, 100, 0) /
(100, -100, 0) / (-100, -100, 100) / (-100, 100, 100) / (100, 100, 100) /

(100, -100, 100) /

B.2 Data for Example 3

For this example, platform 1 is fixed at (—900, —90,0) and platform 2 is fixed
at (900, —90,0). The start robot 1 and 2 joint angles for this example are:
®1¢ = (64.40, —178.80,121.20,0.00,57.60,115.60) and
©2¢ = (—226.97,—185.55,136.58,0.00,48.98,226.97), respectively. The goal joint
angles for this example are:
©1f = (—42.00, -169.46,115.96,0.00, 53.40, 222.00) and
©®2; = (—111.92, -176.85,133.07, —0.14,43.75,112.02), respectively. The six obsta-
cles are as follows:
/1/8/0/(400,0, 1750) / (275, 150, 0) / (275, -150, 0) / (-275, -150, 0) /
(-275, 150, 0) / (275, 150, 100) / (275, -150, 100) / (-275,-150, 100) / (-275, 150, 100) /

148

/2/8/0/(500,0,2000) / (375, 150, 0) / (375, -150, 0) / (-375, -150, 0) /
(-375, 150, 0) / (375, 150, 100) / (375, -150, 100) / (-375, -150, 100) / (-375, 150, 100) /
/3/8/0/(180,0,2100) / (50, 150, 0) / (50, -150, 0) / (-50, 150, 0) / (-50, 150, 0) /
(50, 150, 300) / (50, -150, 300) / (-50, -150, 300) / (-50, 150, 300) /
/4/8/0/(180,0,1450) / (50, 150, 0) / (50, -150, 0) / (-50, -150, 0) / (-50, 150, 0) /
(50, 150, 300) / (50, -150, 300) / (-50, -150, 300) / (-50, 150, 300) /
/5/8/0/(825,0,1850) / (50, 150, 0) / (50, -150, 0) / (-50, -150, 0) / (-50, 150, 0) /
(50, 150, 150) / (50, -150, 150) / (-50, -150, 150) / (-50, 150, 150) /
/6/8/0/(-175,0,1750) / (50, 150, 0) / (50, -150, 0) / (-50, -150, 0) / (-50, 150, 0) /
(50, 150, 250) / (50, -150, 250) / (-50, -150, 250) / (-50, 150, 250) /

B.3 Data for Example 4

The start robot 1 and 2 joint angles for this example are:
©®1p = (—1300.00,0.00, —40.00, —5.00, —110.70, 19.20,4.30, —48.80, 83.40) and
©2p = (-500.00,0.00,-40.00, -184.92, —72.57,170.91,4.76,41.97,82.76), respec-
tively. The goal joint angles for this example are:
©1¢ = (500.00,0.00,40.00, —149.81, —163.61, 46.29, 23.80, 72.91, 242.14) and
©2¢ = (1300.00,0.00,40.00, —171.09, —157.32, 33.29, 7.09, 74.44, 82.36), respectively.
The eight obstacles are as follows:
/1 /8/0/ (150, -850, 700) / (-50, -100, 0) / (-50, 100, 0) / (50, 100, 0) /
(50, -100, 0) / (-50, -100, 300) / (-50, 100, 300) / (50, 100, 300) / (50, -100, 300) /
/2/8/0/ (1000, -850, 700) / (-50, -100, 0) / {-50, 100, 0) / (50, 100, 0) /
(50, -100, 0) / (-50, -100, 300) / (-50, 100, 300) / (50, 100, 300) / (50, -100, 300) /
/3 /8 /0 /(875 -350, 700) / (-100, -50, 0) / (-100, 50, 0) / (100, 50, 0) /
(100, -50, 0) / (-100, -50, 300) / (-100, 50, 300) / (100, 50, 300) / (100, -50, 300) /

149

/4/8/0 /(-85 -1350, 700) / (-100, -50, 0) / (-100, 50, 0) / (100, 50, 0) /
(100, -50, 0) / (-100, -50, 300) / (-100, 50, 300) / (100, 50, 300) / (100, -50, 300) /
/5/8/0/(-875, -850, 600) / (-175, -550, 0) / (-175, 550, 0) / (175, 550, 0) /
(175, -550, 0) / (-175, -550, 100) / (-175, 550, 100) / (175, 550, 100) /

(175, -550, 100) /

/6 /2 /100 / (1450, 1000, 0) / (0, 0, 0) / (0, 0, 650) /

/7/8/0/ (1550, 100, 750) / (-200, -100, 0) / (-200, 100, 0) / (200, 100, 0) /
(200, -100, 0) / (-200, -100, 100) / (-200, 100, 100) / (200, 100, 100) /

(200, -100, 100) /

/ 8/ 8/ 0 / (1800, 1000, 550) / (-100, -50, 0) / (-100, 50, 0) / (100, 50, 0) /
(100, -50, 0) / (-100, -50, 300) / (-100, 50, 300) / (100, 50, 300) / (100, -50, 300) /

